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What are parametric curves?

¢p=R — R"

s (2.

fo(s)’

image of ¢ defines a curve in R".

fa(s)
? fo(s)

).
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Implicitization

implicitization

parameterization of a
curve

its implicit
equation

Example
Unit circle in R2.
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What are implicit equations used for ?

Example: (plane curves)

> |s a given point on a given plane curve C 7
p = (x,y) : point in R?,
F(T1, T2) = 0 : implicit equation of the C.
Question
Is F(x,y) =07
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What are implicit equations used for ?

Example: (plane curves)

> Is a given point on a given plane curve C?
p = (x,y) : point in R?,
F(Ty1, T2) = 0 : implicit equation of the C.
Question
Is F(x,y) =07

Example: (space curves)
» Is a given point p = (x1,--- ,x,) on a given space curve C in
R"?
Fi,- -, F, with F; # --- £ F, define the C.
Question
Are Fi(xy, -+ xn) =0, Fr(xq, -+, xp) =07
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What are implicit equations used for ?

» Intersection of curves C; and Ca, both in R?:
C; is given by the parameterization

R — R?

Als) ()
SF*(&W%M)

Cy is given by the implicit equation F( Ty, T2) = 0.

Question

Als) B(s)) _
’“F<&wém)—0?

» If yes, for which s values ?




What are implicit equations used for ?

» Intersection of the curves C; and Cp, both in R", n > 2
Cy is given by the parameterization

R — R
fi(s) fn(s)
s = <f(1)(5)a"'af0(s)>’

C» is given by the implicit equations
Fi(T1,--+,Tp)=0,---F(T1,---, Tp) =0.

Question
fi fn fi fn
> AreF]_ (f(l)gga'“>f0§3):O""’Fr(%gzg"'.’ﬁ)gzg):O?

» If yes, for which s values ?

Difficulty

» Several substitutions,

» high degree of polynomials to manipulate. BN



Plane curves

Let K be a field.
Algebraic parameterization ¢ is defined as follows

p:=P — P?
(s:t) — (f(s, t): (s, t): f(s, 1)),

and its image defines the curve C.
We assume that the f;'s are of degree d for all i =0,1,2.



Plane curves

Implicitization via Sylvester matrix, notation : Syl

To, T1, T7 : new indeterminates.

| = (bel — flTo, foTQ — szg) C ]K[S, t, To, Tl, T2] ideal. /
contains implicit equation of the curve C.

Example

fo=s3— %szt + gst2 —t3, f; =143 + %5215 — 3st? + 13,
fr = —%53 — 1252t — %st2 — 97t3. Then,

Syl(foTy — A To, foTo — £Tp) =

-1l -3T-2T7 STL+3T0 —-T1 —To 0 0
0 Ty — 14T -in-121n STL+3T0 -1 —To 0
0 0 T) — 14T, -in -2 Ti+3Tp —T1—To
T+ 3iTe —3T2+12T 3T+ 4T —Ty+97Ty 0 0
0 To+ 370 —1T+ 12T 3T+ 4T —Tp, + 97Ty 0
0 0 T2+ 370 1T +12Ty 3T+ 3Ty -T2+ 97Tp

is a 6 X 6 matrix with linear entries in To, T1, T2, and its determinant yields a

polynomial of degree 6 in Tg, T1, To.
- N



Plane curves

Definition
Syzygy module of the parameterization ¢, denoted by Syz, is

SyZ(fb, fl, f2) = {(PO,Pl,P2) € ]K[57 t]3 : PO(S, t)fb(sv t)+
pi(s, t)fi(s, t) + pa(s, t)fa(s, t) = 0}.

Po, p1, P2 are called syzygies of fy, fi, f». Moreover, Syz(fo, fi, f2) is
a free module of K|[s, t] with 2 generators p and q in K|[s, t]3 :

p = (po’p]_,p2) and q = (CI07 a1, CIZ)



Plane curves
Definition
Syzygy module of the parameterization ¢, denoted by Syz, is
SyZ(fo, fla f2) = {(P07 Pi, P2) S ]K[Sa t]3 : P0(57 t)fO(Sa t)+
p1(5, t)fl(s7 t) + p2(57 t)fQ(Sa t) - 0}
Po, P1, P2 are called syzygies of fy, f, f,. Moreover, Syz(fy, f1, f2) is a free
module of IK[s, t] with 2 generators p and q in K][s, t]3 :

p = (po, p1, p2) and q := (qo, q1, G2)-

Definition
{p, q} are called u-basis of the parametric curve, if
» {p,q} is a basis of Syz(fy, f1, f2) and
» p, g have the lowest degree among all the basis of Syz(fy, fi, ).

Moreover, deg(p) = 111, deg(q) = pp and d = py + po. Wﬁm t
M2 = ji1. o ndla=
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Implicitization by resultant matrices with respect to p, g

Notation
p = po(s,t)To + pi(s, t) T1 + pa(s, t) T2 and
q=qo(s,t) To + qi(s, t) T1 + q2(s, t) To.

Example
fo=s3— 3%t + 3st> — 3, fH = 145> + 35°t — 3st? + 13,
fr = —%53 — 1252t — %st2 — 073,

Po 90 2072314393 /9935020485 + 491833577 /124187756t 1007/84s> + 233/168st -+ 5431 /56>
= | —147910417/993502048s — 293063387 /1490253072t —97/112s% — 43/504st — 389 /561>

P1 q1
P2 92 1568555 /2483755125 — 9123809 /2128932960t 723/4252 + 97/126st — 15/141.‘2

Then, p1 =1 and pp = 2. Syl(p, q) is a matrix of 3 x 3 size, with
linear entries in Ty, T1, T, and its determinant yields a polynomial

of degree 3 in Ty, T1, T>.



Implicitization by resultant matrices with respect to p, g

Notation
p=po(s,t)To+ pi(s, t) Ty + pa(s, t) T2 and
q= qo(S, t) To + ql(s, t) T1 + qQ(S, t) T>.

P1 q1| = |—147910417/993502048s — 293063387 /1490253072t 797/11252 — 43/504st — 389/56t2

[PO q0:| |: 2072314393/993502048s + 491833577 /124187756t 1007/8452 + 233/168st + 5431/561‘2
P2 a2 1568555 /2483755125 — 9123809 /2128932960t —23/4252 + 97/126st — 15/14t2

We have p; =1, up = 2.

Definition
Bézout matrix, denoted by Bez(p, q) = (bjj)1<i j<p,. is defined to be

p(7,0)q(s, t) — p(s, t)q(, 0) _ Z byt~ Lshamitlpilgpaitl,

sT — to “
ihj=1

» Bez(p, q) is a matrix of 2 x 2 size, with only quadratic entries in

To, T1, T>, and its determinant yields to a polynomial of degree 2/,
in To. Ty, To. BN
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Implicitization by resultant matrices with respect to p, g

Notation
p=po(s,t) To+ pi(s, t) T1 + p2(s, t) T and
q = qo(s, t) To + qui(s, t) T1 + qa(s, t) Ta.

» Hybird Bézout matrix, HBez(p, q) is composed of the last
w2 — p1 rows of Syl(p, q) in coefficients of g and the first 1
rows of Bez(p, q). Hence, again for the same example
HBez(p, q) is a matrix of 2 x 2 size, with linear and quadratic
entries in Tg, T1, To, and its determinant yields a polynomial
of degree d = o + p1 in Tg, T1, To.

_last row of Syl,(p, q) <* *>
*

;
HBez(p,q) = [\ of Bezs(p, q) \ *



Hybrid Bézout

p=ap(Ty, T2)tH1 + ay(Ty, To)sth1 71 oo 4 ay, (Ty, Tp)sH1,
@ = bo(Ti, T2)th2 + b (T, To)sth2 ™1 4o 4 by, (Ty, To)sh2.

[ buz buy—1 1
by, buy—1 - bo
Syl(p, q) = Ay a1 e 0
A g —1 g —2
L a, a1 ce a0 J
last row of Syl(p, q) * ee- %
d-1th row of Syl(p, q) * *
: * *
HBez(p, q)T:d — po + p1 + 1th row of Syl(p, q) * *

1st row of Bez(p, q)

pith row of Bez(p, q)

Remark

If up = py, then HBez(p, q) does not have any rows of Syl(p, q), B
i.e. any rows with linear entries in Tg, Ty, Tp. n % 2o




Hybrid Bézout

If pp — 1 = 2, then

bu, buy—1 o by 1
Syl(p, q) = bpuy buy—1 - bo
Ay -1 T 0
g -1 -2 T 0
L 0 auq apy—1 s ao i
The red block in Syl(p, q) corresponds to the monomial basis {5”1+1t“2_1, sH1tH2 ... spd 1) td} as
columns.
last row of Syl(p, q) * ee- %
d-1th row of Syl(p, q) * *
. [,
HBez(p, q)T:d — po + p1 + 1th row of Syl(p, q) * e %
1st row of Bez(p, q) IR
pith row of Bez(p, q)
Remark
If pp = p1, then HBez(p, q) does not have any rows of Syl(p, q),
i.e. any rows with linear entries in Tg, T1, Tp. ;

lvzia
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Another interpretation of the quadratic part of HBez

Sylvester form of the u-basis p, g
a = (01, a2) € Z>g, such that |a| ;= a1 +ar < g — 1.
p and g can be decomposed as
p=s""thy 1 + 22t hy o,
q=s""Thyy + %2y,
where h; ;(s, t; xp, x1, x2) are homogeneous polynomials of degree

pi — o — 1 with respect to the variables s, t and linear in
TO? T1> T2-

Definition
The polynomial

Syla (P, q) = det( 1 )
ho1 hop

is called Sylvester form of the u-basis. n% brdan



Another interpretation of the quadratic part of HBez
a = (a1,a2) € Z>, such that |a| := a1 + ap < py — 1.
p and g can be decomposed as
p=sTlhy g 4 ro2tip o
q=s"hy +t2p, o)
where h; j(s, t; xo, X1, X2) are homogeneous polynomials of degree u; — oj — 1 with
respect to the variables s, t and linear in Ty, T1, To.
Definition
The polynomial

o hi1 hip
Syla(p7 q) = det ( a1 ho )

is called Sylvester form of the p-basis.

Theorem

Let v be an integer such that pp —1 < v < d — 2. Then the set of d — 1 — v Sylvester
forms

{Syla(p; q)}la‘:d—Z—y =
{Syl(d—2—u,0) (P, ), ,Sylo,d-2-.)(P, q)

form a basis of the quadratic part of HBez(p, q). S ARCADE'S



Summary

Assume deg(f;) = d,Vi=0,1,2 and pp > p1.
For a general plane curve of degree d

[d

size of the matrix

type of resultant matrix

degree of determinant

(2d x 2d) Syl(foT1 — fiTo, fo T2 — f2To) 2d,
(d x d) Syl(p, q) d,
(/JQ X ,LLQ) HBeZ(p7 q) d.

> -basis serves to decrease the size of Syl matrix to its half

size,

» HBez(p, q) has half size of Syl(p, q).




Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of p-basis into higher dimensions.
Let K be a field.

¢:=PL — Pn
(s:t) = (f(s,t): fi(s,t): - : fa(s, t)).

Definition
Syzygy module of the parameterization ¢, denoted by Syz, is

Syz(va t 7f") = {(go’ t 7gﬂ) S ]K[57 t]n+1 : 27:0 gl'ff = 0}

g0, ,&n are called syzygies of fy,- - - , f,. Moreover, Syz(fy,--- ,fa) is a free module
of K[s, t] with n generators py,--- , pp in K[s, t]"1 : p; := (Pig>- - »Pi,),Yi=1,---n
Definition
{p1,---, pn} are called p-basis of the parametric curve, if

» {pi1, - ,pn} is a basis of Syz(fy, -+, fn) and

» {p1, - ,pn} have the lowest degree among all the basis of Syz(fy, - , fn).

Moreover, deg(p;) = pi, Vi =1,--- ,n, and 3.7 | pi = d. We assume that

Hn > >
’ ' BN o
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Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of p-basis into
higher dimensions. Let KK be a field.

¢ =P — Pr

(s:t) — (fo(s,t): (s, t): -1 fu(s, t)).
To, -, Th: new indeterminates.
Assumption
Hn 20 2 1
M is computed at degree p, + ptp—1 — 1, i.e. its rows are in
monomials basis {tHntHn-1=1 gtpnthn—1=2 ... ghntin1=11 g0 it
has i, + pin—1 rows with linear entries in Tg, -, Th.



What is M ?

M considers moving lines.

What is a moving line?
A moving line L is

L=Ao(s,t)To+ Ai(s,t) T1 + -+ + An(s, t) Tp.

We say that L follows the surface if

Z Ai(s, t)oi(s, t) = 0.

i=1

L is of degree 1 in Tg,---, Tp.



What is M ?

M is constructed by the coefficients of the family of moving lines
of degree tp + ptp—1 — 1 over s, t

such that

\
|
Mun+un_1—1 = L
|
|

\
\
L,
|
\

—1—1 12 -1
(Slin"l‘/ﬁn 1 ’SMn"FNn 1 t’ cee t,un"‘ﬂl ) Mﬂn+#n71_1 — [Lla cee Lr]

The L;'s are the moving lines following the parametrization of the

given curve.



What is M ?

» M considers only linear relations, (as Syl),

» In P2, M is computed at degree o + ;1 —1=d — 1, so it
has d rows with linear entries in Tg, T1, To.

size of the matrix | type of resultant matrix | degree of determinant
(d x d) Syl(p, q) d,
(d x d) Myiz vy —1 d,
(p2 X p2) HBez(p, q) d.

» M works for higher dimensions, i.e. spaces curves in P”,

n> 3,

» It is written in a monomial or Bézier basis of degree

Mtn+ fp—1 — 1,

» The rank of M drops for the points on the curve C.



Our new method, notation : QM

Why a new method ?
> QM generalizes Hybrid Bézout to the higher dimensions,
HBez € P? ~» QM € P",n > 3,

» The rows of QM are in monomial basis of degree u, — 1,

number of rows | type of matrix

Mn + n—1 Mu,,JrM,,,lfl:
Hn QMMn .

We recall that for a general curve pu; = L%J for
i=1---n—1, and p, = [ﬂ, hence QM has almost the half

n
rows of M.

» The rank of QM drops for the points (xp,- - ,x,) on the
curve C € R".
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Our new method QM

QM considers both moving lines and moving quadrics.

What is a moving quadric?
A moving quadric L is

Q= Aoo(S, t) T02 -+ A01(S, t) To TH+---+ Ann(S, t) T,?
We say that @ follows the surface if

D Ajls, t)eils, t)gy(s, t) = 0.

1<i<j<n

Q is of degree 2in Ty, - Th.



Our new method QM

Remark
Let L be a moving line following the parameterization ¢. Then,

T;L = T,'(A()(S, t) To+---+ An(s, t) Tn),Vi =0,---,n

is a moving quadric following the parameterization ¢.

Hence, we consider the subvector space of moving quadrics which
are not coming from moving lines.



Our new method QM

What is QM?

QM is constructed by the coefficients of the family of moving
quadrics which are not coming from moving lines, and moving lines
of degree u, — 1 over s, where i, > -+ > 1.

N T T B
N T T B
QM,,—1= L1 | L @1 | Q«
N T T B
S T R B
such that
(slln—17sl£n—2t’... 7t,Un_1) QM —1= [Lla"' ’Lranf"Qk]'

The L;'s are the moving lines and the Q;'s are the moving quadrics
following the parametrization of the given curve. m % o



Main result

We have a compact implicit matrix QM of a parametric curve C in
IP" with linear and quadratic entires in Tg,- -+, T,, in monomial
basis of degree 1, — 1, such that on the points (xg, - ,xn) € C,
the rank of QM(xq,- -, x,) drops.



Comparisons

For a general degree 8 parametric curve, having u-basis of degree
(2,3,3), we have following number of linear and quadratic
relations according to monomial basis in chosen degree.

BLUE : M,
RED : QM.
degree of monomial basis | linear relations | quadratic relations | size of QM

1 0 2 2x2
2 1 7 3x8
3 4 4 4x8
4 7 1 5x8
5 10 0 6 x 10
6 13 0 7x13
7 16 0 8 x 16

> M appears from the degree 5 which is
tn+ ptip-1 —1=3+3-1=5.
> QM appears from the degree 2 which is u, —1=3-1=2.



Is point on the curve?

» Check the drop of rank of QM evaluated at given point.

d wi's M size rank ms. QM size rank ms
5 (2,3) 5x5 4.13 3x3 1.69
5 1.2,2) %7 73 2x5 162
9 | (3.3.3) 6x9 8.05 3x0 764
9 (1,4,4) 8x15 18.17 4x9 5.18
0 | (55) 10x10 17.83 5x5 471
15 | (1.7,7) 14x27 713 7x15 1351

» QM has half number of M,

» Computation of QM takes more time than the computation of
M, however for instance computation of drop of rank is faster

than M.

Theorem

Drop of rank of QM at a given point on C gives multiplicty of the

point.




Thanks!
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