# Implicit matrix representation of curves via quadratic relations

#### Fatmanur Yıldırım

Aromath Team Inria Sophia Antipolis Méditerranée joint work with Laurent Busé and Clément Laroche



What are parametric curves?

$$\begin{split} \phi &:= \mathbb{R} \quad \to \quad \mathbb{R}^n \\ s \quad \mapsto \quad \left(\frac{f_1(s)}{f_0(s)}, \cdots, \frac{f_n(s)}{f_0(s)}\right), \end{split}$$

image of  $\phi$  defines a curve in  $\mathbb{R}^n$ .



# Implicitization



#### Example

Unit circle in  $\mathbb{R}^2$ .



## Example: (plane curves)

Is a given point on a given plane curve C ?
 p = (x, y) : point in R<sup>2</sup>,
 F(T<sub>1</sub>, T<sub>2</sub>) = 0 : implicit equation of the C.

Question

Is F(x, y) = 0?



## Example: (plane curves)

Is a given point on a given plane curve C?
 p = (x, y) : point in ℝ<sup>2</sup>,
 F(T<sub>1</sub>, T<sub>2</sub>) = 0 : implicit equation of the C.

Question

Is F(x, y) = 0?

## Example: (space curves)

▶ Is a given point  $p = (x_1, \dots, x_n)$  on a given space curve C in  $\mathbb{R}^n$ ?  $F_1, \dots, F_r$  with  $F_1 \neq \dots \neq F_r$  define the C.

#### Question

Are 
$$F_1(x_1, \dots, x_n) = 0, \dots, F_r(x_1, \dots, x_n) = 0$$
?



Intersection of curves C<sub>1</sub> and C<sub>2</sub>, both in R<sup>2</sup>:
 C<sub>1</sub> is given by the parameterization

$$\mathbb{R} \rightarrow \mathbb{R}^2$$
  
 $s \mapsto \left( rac{f_1(s)}{f_0(s)}, rac{f_2(s)}{f_0(s)} 
ight)$ 

 $C_2$  is given by the implicit equation  $F(T_1, T_2) = 0$ .

Question

• Is 
$$F\left(\frac{f_1(s)}{f_0(s)}, \frac{f_2(s)}{f_0(s)}\right) = 0$$
 ?  
• If yes, for which s values ?



Intersection of the curves C₁ and C₂, both in ℝ<sup>n</sup>, n ≥ 2 C₁ is given by the parameterization

$$\begin{array}{rcl} \mathbb{R} & \rightarrow & \mathbb{R}^n \\ s & \mapsto & \left( \frac{f_1(s)}{f_0(s)}, \cdots, \frac{f_n(s)}{f_0(s)} \right), \end{array}$$

 $C_2$  is given by the implicit equations  $F_1(T_1, \dots, T_n) = 0, \dots F_r(T_1, \dots, T_n) = 0.$ 

Question

• Are 
$$F_1\left(\frac{f_1(s)}{f_0(s)}, \cdots, \frac{f_n(s)}{f_0(s)}\right) = 0, \cdots, F_r\left(\frac{f_1(s)}{f_0(s)}, \cdots, \frac{f_n(s)}{f_0(s)}\right) = 0$$
?

If yes, for which s values ?

Difficulty

- Several substitutions,
- high degree of polynomials to manipulate.



Let  ${\rm I\!K}$  be a field.

Algebraic parameterization  $\phi$  is defined as follows

$$egin{array}{rcl} \phi & := \mathbb{P} & 
ightarrow & \mathbb{P}^2 \ (s:t) & \mapsto & \left(f_0(s,t):f_1(s,t):f_2(s,t)
ight), \end{array}$$

and its image defines the curve C. We assume that the  $f_i$ 's are of degree d for all i = 0, 1, 2.



## **Plane curves**

#### Implicitization via Sylvester matrix, notation : Syl

 $T_0, T_1, T_2$ : new indeterminates.  $I := (f_0 T_1 - f_1 T_0, f_0 T_2 - f_2 T_0) \subset \mathbb{K}[s, t, T_0, T_1, T_2]$  ideal. I contains implicit equation of the curve C.

## Example $f_0 = s^3 - \frac{1}{2}s^2t + \frac{5}{9}st^2 - t^3$ , $f_1 = 14s^3 + \frac{2}{3}s^2t - 3st^2 + t^3$ , $f_2 = -\frac{1}{4}s^3 - 12s^2t - \frac{4}{3}st^2 - 97t^3$ . Then, $Syl(f_0T_1 - f_1T_0, f_0T_2 - f_2T_0) =$

$$\begin{bmatrix} T_1 - 14T_0 & -\frac{1}{2}T_1 - \frac{2}{3}T_0 & \frac{5}{9}T_1 + 3T_0 & -T_1 - T_0 & 0 & 0 \\ 0 & T_1 - 14T_0 & -\frac{1}{2}T_1 - \frac{2}{3}T_0 & \frac{5}{9}T_1 + 3T_0 & -T_1 - T_0 & 0 \\ 0 & 0 & T_1 - 14T_0 & -\frac{1}{2}T_1 - \frac{2}{3}T_0 & \frac{5}{9}T_1 + 3T_0 & -T_1 - T_0 \\ T_2 + \frac{1}{4}T_0 & -\frac{1}{2}T_2 + \frac{1}{3}T_0 & -T_2 + 97T_0 & 0 \\ 0 & T_2 + \frac{1}{4}T_0 & -\frac{1}{2}T_2 + 12T_0 & \frac{5}{9}T_2 + \frac{4}{3}T_0 & -T_2 + 97T_0 & 0 \\ 0 & 0 & T_2 + \frac{1}{4}T_0 & -\frac{1}{2}T_2 + 12T_0 & \frac{5}{9}T_2 + \frac{4}{3}T_0 & -T_2 + 97T_0 \\ 0 & 0 & T_2 + \frac{1}{4}T_0 & -\frac{1}{2}T_2 + 12T_0 & \frac{5}{9}T_2 + \frac{4}{3}T_0 & -T_2 + 97T_0 \end{bmatrix}$$

is a  $6 \times 6$  matrix with linear entries in  $T_0$ ,  $T_1$ ,  $T_2$ , and its determinant yields a polynomial of degree 6 in  $T_0$ ,  $T_1$ ,  $T_2$ .



## **Plane curves**

Definition Syzygy module of the parameterization  $\phi$ , denoted by Syz, is  $Syz(f_0, f_1, f_2) := \{(p_0, p_1, p_2) \in \mathbb{K}[s, t]^3 : p_0(s, t)f_0(s, t) + p_1(s, t)f_1(s, t) + p_2(s, t)f_2(s, t) = 0\}.$ 

 $p_0, p_1, p_2$  are called syzygies of  $f_0, f_1, f_2$ . Moreover,  $Syz(f_0, f_1, f_2)$  is a free module of  $\mathbb{K}[s, t]$  with 2 generators p and q in  $\mathbb{K}[s, t]^3$ :

$$p := (p_0, p_1, p_2)$$
 and  $q := (q_0, q_1, q_2)$ .



## **Plane curves**

Definition

Syzygy module of the parameterization  $\phi$ , denoted by Syz, is

$$\begin{split} \operatorname{Syz}(f_0,f_1,f_2) &:= \{(p_0,p_1,p_2) \quad \in \mathbb{K}[s,t]^3 : p_0(s,t)f_0(s,t) + \\ p_1(s,t)f_1(s,t) + p_2(s,t)f_2(s,t) = 0\}. \end{split}$$

 $p_0, p_1, p_2$  are called syzygies of  $f_0, f_1, f_2$ . Moreover,  $Syz(f_0, f_1, f_2)$  is a free module of  $\mathbb{K}[s, t]$  with 2 generators p and q in  $\mathbb{K}[s, t]^3$ :

$$p := (p_0, p_1, p_2)$$
 and  $q := (q_0, q_1, q_2)$ .

#### Definition

 $\{p,q\}$  are called  $\mu$ -basis of the parametric curve, if

•  $\{p,q\}$  is a basis of  $Syz(f_0, f_1, f_2)$  and

▶ p, q have the lowest degree among all the basis of  $Syz(f_0, f_1, f_2)$ .

Moreover,  $deg(p) = \mu_1$ ,  $deg(q) = \mu_2$  and  $d = \mu_1 + \mu_2$ . We assume that  $\mu_2 \ge \mu_1$ .

Implicitization by resultant matrices with respect to p, q

#### Notation

$$m{p} = p_0(s,t) T_0 + p_1(s,t) T_1 + p_2(s,t) T_2$$
 and  
 $m{q} = q_0(s,t) T_0 + q_1(s,t) T_1 + q_2(s,t) T_2.$ 

## Example $f_0 = s^3 - \frac{1}{2}s^2t + \frac{5}{9}st^2 - t^3$ , $f_1 = 14s^3 + \frac{2}{3}s^2t - 3st^2 + t^3$ , $f_2 = -\frac{1}{4}s^3 - 12s^2t - \frac{4}{3}st^2 - 97t^3$ .

 $\begin{bmatrix} p_0 & q_0 \\ p_1 & q_1 \\ p_2 & q_2 \end{bmatrix} = \begin{bmatrix} 2072314393/993502048s + 491833577/124187756t & 1007/84s^2 + 233/168st + 5431/56t^2 \\ -147910417/993502048s - 293063387/1490253072t & -97/112s^2 - 43/504st - 389/56t^2 \\ 1568555/248375512s - 9123809/2128932960t & -23/42s^2 + 97/126st - 15/14t^2 \end{bmatrix}$ 

Then,  $\mu_1 = 1$  and  $\mu_2 = 2$ . Syl( $\boldsymbol{p}, \boldsymbol{q}$ ) is a matrix of  $3 \times 3$  size, with linear entries in  $T_0, T_1, T_2$ , and its determinant yields a polynomial of degree 3 in  $T_0, T_1, T_2$ .



Implicitization by resultant matrices with respect to p, q

Notation  $p = p_0(s, t)T_0 + p_1(s, t)T_1 + p_2(s, t)T_2$  and  $q = q_0(s, t)T_0 + q_1(s, t)T_1 + q_2(s, t)T_2$ .

 $\frac{1007/84s^2 + 233/168st + 5431/56t^2}{-97/112s^2 - 43/504st - 389/56t^2} \\ -23/42s^2 + 97/126st - 15/14t^2 \end{bmatrix}$ 

We have  $\mu_1 = 1, \mu_2 = 2$ .

#### Definition

Bézout matrix, denoted by  $\text{Bez}(\boldsymbol{p}, \boldsymbol{q}) = (b_{ij})_{1 \leq i,j \leq \mu_2}$ , is defined to be

$$rac{p( au,\sigma)q(s,t)-p(s,t)q( au,\sigma)}{s au-t\sigma}=\sum_{i,j=1}b_{ij}t^{i-1}s^{\mu_2-i+1} au^{j-1}\sigma^{\mu_2-j+1}.$$

• Bez(p, q) is a matrix of 2 × 2 size, with only quadratic entries in  $T_0, T_1, T_2$ , and its determinant yields to a polynomial of degree  $2\mu_2$  in  $T_0, T_1, T_2$ .

Implicitization by resultant matrices with respect to p, q

#### Notation

$$m{p} = p_0(s,t) T_0 + p_1(s,t) T_1 + p_2(s,t) T_2$$
 and  
 $m{q} = q_0(s,t) T_0 + q_1(s,t) T_1 + q_2(s,t) T_2.$ 

► Hybird Bézout matrix, HBez(p, q) is composed of the last µ<sub>2</sub> - µ<sub>1</sub> rows of Syl(p, q) in coefficients of q and the first µ<sub>1</sub> rows of Bez(p, q). Hence, again for the same example HBez(p, q) is a matrix of 2 × 2 size, with linear and quadratic entries in T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, and its determinant yields a polynomial of degree d = µ<sub>2</sub> + µ<sub>1</sub> in T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>.

$$\operatorname{HBez}(\boldsymbol{p}, \boldsymbol{q})^{\mathcal{T}} = \begin{array}{c} \operatorname{last row of } \operatorname{Syl}_{s}(\boldsymbol{p}, \boldsymbol{q}) \\ \operatorname{1st row of } \operatorname{Bez}_{s}(\boldsymbol{p}, \boldsymbol{q}) \begin{pmatrix} * & * \\ * & * \end{pmatrix}$$



# Hybrid Bézout



#### Remark

If  $\mu_2 = \mu_1$ , then  $\operatorname{HBez}(\boldsymbol{p}, \boldsymbol{q})$  does not have any rows of  $\operatorname{Syl}(\boldsymbol{p}, \boldsymbol{q})$ , i.e. any rows with linear entries in  $T_0, T_1, T_2$ .



# Hybrid Bézout

If 
$$\mu_2 - \mu_1 = 2$$
, then  

$$Syl(\boldsymbol{\rho}, \boldsymbol{q}) = \begin{bmatrix} b_{\mu_2} & b_{\mu_2 - 1} & \cdots & b_0 \\ & & & \ddots \\ & & & \ddots \\ a_{\mu_1} & a_{\mu_1 - 1} & \cdots & a_0 \\ & \vdots \\ a_{\mu_1} & a_{\mu_1 - 1} & a_{\mu_1 - 2} & \cdots & 0 \\ & 0 & a_{\mu_1} & a_{\mu_1 - 1} & \cdots & a_0 \end{bmatrix}$$

The red block in Syl(p, q) corresponds to the monomial basis { $s^{\mu_1+1}t^{\mu_2-1}$ ,  $s^{\mu_1}t^{\mu_2}$ ,  $\cdots$ ,  $st^{d-1}$ ,  $t^d$ } as columns.

$$HBez(\boldsymbol{p}, \boldsymbol{q})^{T} = \boldsymbol{d} - \mu_{2} + \mu_{1} + 1 \text{th row of Syl}(\boldsymbol{p}, \boldsymbol{q})$$

$$\vdots$$

$$HBez(\boldsymbol{p}, \boldsymbol{q})^{T} = \boldsymbol{d} - \mu_{2} + \mu_{1} + 1 \text{th row of Syl}(\boldsymbol{p}, \boldsymbol{q})$$

$$\vdots$$

$$\mu_{1} \text{th row of Bez}(\boldsymbol{p}, \boldsymbol{q})$$

$$\vdots$$

$$\mu_{1} \text{th row of Bez}(\boldsymbol{p}, \boldsymbol{q})$$

$$\vdots$$

#### Remark

If  $\mu_2 = \mu_1$ , then  $\operatorname{HBez}(\boldsymbol{p}, \boldsymbol{q})$  does not have any rows of  $\operatorname{Syl}(\boldsymbol{p}, \boldsymbol{q})$ , i.e. any rows with linear entries in  $T_0, T_1, T_2$ .



Another interpretation of the quadratic part of HBez

Sylvester form of the  $\mu$ -basis p, q $\alpha := (\alpha_1, \alpha_2) \in \mathbb{Z}_{\geq 0}$ , such that  $|\alpha| := \alpha_1 + \alpha_2 \leq \mu_1 - 1$ . p and q can be decomposed as

$$p = s^{\alpha_1+1}h_{1,1} + t^{\alpha_2+1}h_{1,2},$$
  
$$q = s^{\alpha_1+1}h_{2,1} + t^{\alpha_2+1}h_{2,2},$$

where  $h_{i,j}(s, t; x_0, x_1, x_2)$  are homogeneous polynomials of degree  $\mu_i - \alpha_j - 1$  with respect to the variables s, t and linear in  $T_0, T_1, T_2$ .

Definition The polynomial

$$\mathrm{Syl}_lpha(oldsymbol{p},oldsymbol{q}):= \mathsf{det} \left(egin{array}{cc} h_{1,1} & h_{1,2} \ h_{2,1} & h_{2,2} \end{array}
ight)$$

is called Sylvester form of the  $\mu$ -basis.



## Another interpretation of the quadratic part of HBez

$$\label{eq:alpha} \begin{split} \alpha := (\alpha_1, \alpha_2) \in \mathbb{Z}_{\geq 0}, \text{ such that } |\alpha| := \alpha_1 + \alpha_2 \leq \mu_1 - 1. \\ \textbf{\textit{p}} \text{ and } \textbf{\textit{q}} \text{ can be decomposed as} \end{split}$$

$$\boldsymbol{\rho} = s^{\alpha_1 + 1} h_{1,1} + t^{\alpha_2 + 1} h_{1,2}, \\ \boldsymbol{q} = s^{\alpha_1 + 1} h_{2,1} + t^{\alpha_2 + 1} h_{2,2},$$

where  $h_{i,j}(s, t; x_0, x_1, x_2)$  are homogeneous polynomials of degree  $\mu_i - \alpha_j - 1$  with respect to the variables s, t and linear in  $T_0, T_1, T_2$ .

#### Definition

The polynomial

$$\operatorname{Syl}_{\alpha}(\boldsymbol{p},\boldsymbol{q}) := det \left(\begin{array}{cc} h_{1,1} & h_{1,2} \\ h_{2,1} & h_{2,2} \end{array}\right)$$

is called Sylvester form of the  $\mu$ -basis.

#### Theorem

Let  $\nu$  be an integer such that  $\mu_2 - 1 \le \nu \le d - 2$ . Then the set of  $d - 1 - \nu$  Sylvester forms

$$\{\operatorname{Syl}_{\alpha}(\boldsymbol{p},\boldsymbol{q})\}_{|\alpha|=d-2-\nu} = \left\{\operatorname{Syl}_{(d-2-\nu,0)}(\boldsymbol{p},\boldsymbol{q}), \dots, \operatorname{Syl}_{(0,d-2-\nu)}(\boldsymbol{p},\boldsymbol{q})\right\}$$

form a basis of the quadratic part of HBez(p, q).

#### Summary

Assume 
$$\deg(f_i) = d, \forall i = 0, 1, 2 \text{ and } \mu_2 \ge \mu_1$$
.  
For a general plane curve of degree  $d$ 

$$\mu_2 = \left\lceil \frac{d}{2} \right\rceil.$$

| size of the matrix    | type of resultant matrix                     | degree of determinant |  |
|-----------------------|----------------------------------------------|-----------------------|--|
| $(2d \times 2d)$      | $Syl(f_0 T_1 - f_1 T_0, f_0 T_2 - f_2 T_0)$  | 2d,                   |  |
| $(d \times d)$        | $\operatorname{Syl}({m p},{m q})$            | <i>d</i> ,            |  |
| $(\mu_2 	imes \mu_2)$ | $	ext{HBez}(\boldsymbol{p}, \boldsymbol{q})$ | d.                    |  |

µ-basis serves to decrease the size of Syl matrix to its half size,

•  $\operatorname{HBez}(\boldsymbol{p}, \boldsymbol{q})$  has half size of  $\operatorname{Syl}(\boldsymbol{p}, \boldsymbol{q})$ .



# Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of  $\mu\text{-basis into higher dimensions.}$  Let  $\mathbb K$  be a field.

$$\begin{array}{rcl} \phi := \mathbb{P}^1 & \to & \mathbb{P}^n \\ (s:t) & \mapsto & (f_0(s,t):f_1(s,t):\cdots:f_n(s,t)) \,. \end{array}$$

Definition Syzygy module of the parameterization  $\phi$ , denoted by Syz, is

$$Syz(f_0, \cdots, f_n) := \{(g_0, \cdots, g_n) \in \mathbb{K}[s, t]^{n+1} : \sum_{i=0}^n g_i f_i = 0\}.$$

 $g_0, \dots, g_n$  are called syzygies of  $f_0, \dots, f_n$ . Moreover,  $\operatorname{Syz}(f_0, \dots, f_n)$  is a free module of  $\mathbb{K}[s, t]$  with n generators  $p_1, \dots, p_n$  in  $\mathbb{K}[s, t]^{n+1} : p_i := (p_{i_0}, \dots, p_{i_n}), \forall i = 1, \dots n$ .

#### Definition

 $\mu_n \geq \cdots \geq \mu_1.$ 

 $\{p_1, \cdots, p_n\}$  are called  $\mu$ -basis of the parametric curve, if

•  $\{p_1, \cdots, p_n\}$  is a basis of  $Syz(f_0, \cdots, f_n)$  and

► { $p_1, \dots, p_n$ } have the lowest degree among all the basis of Syz( $f_0, \dots, f_n$ ). Moreover, deg( $p_i$ ) =  $\mu_i, \forall i = 1, \dots, n$ , and  $\sum_{i=1}^n \mu_i = d$ . We assume that



# Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of  $\mu$ -basis into higher dimensions. Let  $\mathbb{K}$  be a field.

$$\phi := \mathbb{P} \quad \rightarrow \quad \mathbb{P}^n$$
  
(s:t) 
$$\mapsto \quad (f_0(s,t):f_1(s,t):\cdots:f_n(s,t)).$$

 $T_0, \cdots, T_n$ : new indeterminates.

Assumption

 $\mu_n \geq \cdots \geq \mu_1.$ 

*M* is computed at degree  $\mu_n + \mu_{n-1} - 1$ , i.e. its rows are in monomials basis  $\{t^{\mu_n + \mu_{n-1} - 1}, st^{\mu_n + \mu_{n-1} - 2}, \cdots, s^{\mu_n + \mu_{n-1} - 1}\}$ , so it has  $\mu_n + \mu_{n-1}$  rows with linear entries in  $T_0, \cdots, T_n$ .



## What is M?

*M* considers moving lines.

What is a moving line? A moving line *L* is

$$L = A_0(s, t) T_0 + A_1(s, t) T_1 + \cdots + A_n(s, t) T_n.$$

We say that L follows the surface if

$$\sum_{i=1}^n A_i(s,t)\phi_i(s,t)\equiv 0.$$

L is of degree 1 in  $T_0, \dots, T_n$ .



## What is M?

M is constructed by the coefficients of the family of moving lines of degree  $\mu_n+\mu_{n-1}-1$  over s,t

$$M_{\mu_n + \mu_{n-1} - 1} = \begin{bmatrix} | & | & | \\ | & | & | \\ L_1 & | & L_r \\ | & | & | \\ | & | & | \end{bmatrix}$$

such that

$$(s^{\mu_n+\mu_{n-1}-1},s^{\mu_n+\mu_{n-1}-2}t,\cdots,t^{\mu_n+\mu_1-1})M_{\mu_n+\mu_{n-1}-1}=[L_1,\cdots,L_r].$$

The  $L_i$ 's are the moving lines following the parametrization of the given curve.



# What is M?

- ▶ *M* considers only linear relations, (as Syl),
- ▶ In  $\mathbb{P}^2$ , *M* is computed at degree  $\mu_2 + \mu_1 1 = d 1$ , so it has *d* rows with linear entries in  $T_0, T_1, T_2$ .

| size of the matrix    | type of resultant matrix                              | degree of determinant |  |
|-----------------------|-------------------------------------------------------|-----------------------|--|
| $(d \times d)$        | $\operatorname{Syl}(\boldsymbol{p}, \boldsymbol{q})$  | d,                    |  |
| $(d \times d)$        | $M_{\mu_2+\mu_1-1}$                                   | d,                    |  |
| $(\mu_2 	imes \mu_2)$ | $\operatorname{HBez}(\boldsymbol{p}, \boldsymbol{q})$ | d.                    |  |

- M works for higher dimensions, i.e. spaces curves in ℙ<sup>n</sup>, n ≥ 3,
- ► It is written in a monomial or Bézier basis of degree  $\mu_n + \mu_{n-1} 1$ ,
- The rank of M drops for the points on the curve C.



Our new method, notation : QM

## Why a new method ?

QM generalizes Hybrid Bézout to the higher dimensions,

$$\mathrm{HBez} \in \mathbb{P}^2 \rightsquigarrow QM \in \mathbb{P}^n, n \geq 3,$$

• The rows of QM are in monomial basis of degree  $\mu_n - 1$ ,

| number of rows      | type of matrix            |
|---------------------|---------------------------|
| $\mu_n + \mu_{n-1}$ | $M_{\mu_n+\mu_{n-1}-1}$ , |
| $\mu_n$             | $QM_{\mu_n}$ .            |

We recall that for a general curve  $\mu_i = \lfloor \frac{d}{n} \rfloor$ , for  $i = 1, \dots, n-1$ , and  $\mu_n = \lfloor \frac{d}{n} \rfloor$ , hence *QM* has almost the half rows of *M*.

The rank of QM drops for the points (x<sub>0</sub>, · · · , x<sub>n</sub>) on the curve C ∈ ℝ<sup>n</sup>.



## Our new method QM

QM considers both moving lines and moving quadrics.

What is a moving quadric? A moving quadric L is

$$Q = A_{00}(s,t)T_0^2 + A_{01}(s,t)T_0T_1 + \cdots + A_{nn}(s,t)T_n^2.$$

We say that Q follows the surface if

$$\sum_{1\leq i\leq j\leq n}A_{ij}(s,t)\phi_i(s,t)\phi_j(s,t)\equiv 0.$$

Q is of degree 2 in  $T_0, \cdots T_n$ .



#### Remark

Let L be a moving line following the parameterization  $\phi$ . Then,

$$T_i L = T_i (A_0(s, t) T_0 + \cdots + A_n(s, t) T_n), \forall i = 0, \cdots, n$$

is a moving quadric following the parameterization  $\phi$ . Hence, we consider the subvector space of moving quadrics which are not coming from moving lines.



# Our new method QM

## What is *QM*?

QM is constructed by the coefficients of the family of moving quadrics which are not coming from moving lines, and moving lines of degree  $\mu_n - 1$  over *s*, where  $\mu_n \geq \cdots \geq \mu_1$ .

such that

$$(s^{\mu_n-1}, s^{\mu_n-2}t, \cdots, t^{\mu_n-1}) QM_{\mu_n-1} = [L_1, \cdots, L_r, Q_1, \cdots, Q_k].$$

The  $L_i$ 's are the moving lines and the  $Q_j$ 's are the moving quadrics following the parametrization of the given curve.



## Main result

We have a compact implicit matrix QM of a parametric curve C in  $\mathbb{P}^n$  with linear and quadratic entires in  $T_0, \dots, T_n$ , in monomial basis of degree  $\mu_n - 1$ , such that on the points  $(x_0, \dots, x_n) \in C$ , the rank of  $QM(x_1, \dots, x_n)$  drops.



## Comparisons

For a general degree 8 parametric curve, having  $\mu$ -basis of degree (2, 3, 3), we have following number of linear and quadratic relations according to monomial basis in chosen degree. BLUE : M, RED : QM.

| degree of monomial basis | linear relations | quadratic relations | size of QM   |
|--------------------------|------------------|---------------------|--------------|
| 1                        | 0                | 2                   | $2 \times 2$ |
| 2                        | 1                | 7                   | $3 \times 8$ |
| 3                        | 4                | 4                   | 4 × 8        |
| 4                        | 7                | 1                   | $5 \times 8$ |
| 5                        | 10               | 0                   | 6 	imes 10   |
| 6                        | 13               | 0                   | 7 	imes 13   |
| 7                        | 16               | 0                   | 8 	imes 16   |

- *M* appears from the degree 5 which is  $\mu_n + \mu_{n-1} 1 = 3 + 3 1 = 5$ .
- QM appears from the degree 2 which is  $\mu_n 1 = 3 1 = 2$ .



## Is point on the curve?

• Check the drop of rank of *QM* evaluated at given point.

| d  | $\mu_i$ 's | M size | Mrep ms. | rank ms. | QM size | QM ms | rank ms |
|----|------------|--------|----------|----------|---------|-------|---------|
| 5  | (2,3)      | 5×5    | 9        | 4.13     | 3×3     | 14    | 1.69    |
| 5  | (1,2,2)    | 4×7    | 7        | 4.3      | 2×5     | 18    | 1.62    |
| 9  | (3,3,3)    | 6×9    | 12       | 8.95     | 3×9     | 38    | 4.64    |
| 9  | (1,4,4)    | 8×15   | 18       | 18.17    | 4×9     | 50    | 5.18    |
| 10 | (5,5)      | 10×10  | 15       | 17.83    | 5×5     | 28    | 4.71    |
| 15 | (1,7,7)    | 14×27  | 77       | 71.3     | 7×15    | 282   | 13.51   |

- QM has half number of M,
- Computation of QM takes more time than the computation of M, however for instance computation of drop of rank is faster than M.

#### Theorem

Drop of rank of QM at a given point on C gives multiplicty of the point.



## Thanks!

