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What are parametric curves?

φ := R → Rn

s 7→
(
f1(s)
f0(s) , · · · ,

fn(s)
f0(s)

)
,

image of φ defines a curve in Rn.



Implicitization

Example

Unit circle in R2.



What are implicit equations used for ?

Example: (plane curves)

I Is a given point on a given plane curve C ?
p = (x , y) : point in R2,
F (T1,T2) = 0 : implicit equation of the C.

Question
Is F (x , y) = 0?



What are implicit equations used for ?

Example: (plane curves)

I Is a given point on a given plane curve C?
p = (x , y) : point in R2,
F (T1,T2) = 0 : implicit equation of the C.

Question
Is F (x , y) = 0?

Example: (space curves)

I Is a given point p = (x1, · · · , xn) on a given space curve C in
Rn?
F1, · · · ,Fr with F1 6= · · · 6= Fr define the C.

Question
Are F1(x1, · · · , xn) = 0, · · · ,Fr (x1, · · · , xn) = 0 ?



What are implicit equations used for ?

I Intersection of curves C1 and C2, both in R2:
C1 is given by the parameterization

R → R2

s 7→
(
f1(s)
f0(s) ,

f2(s)
f0(s)

)
,

C2 is given by the implicit equation F (T1,T2) = 0.

Question

I Is F
(
f1(s)
f0(s) ,

f2(s)
f0(s)

)
= 0 ?

I If yes, for which s values ?



What are implicit equations used for ?

I Intersection of the curves C1 and C2, both in Rn, n ≥ 2
C1 is given by the parameterization

R → Rn

s 7→
(
f1(s)
f0(s) , · · · ,

fn(s)
f0(s)

)
,

C2 is given by the implicit equations
F1(T1, · · · ,Tn) = 0, · · ·Fr (T1, · · · ,Tn) = 0.

Question

I Are F1

(
f1(s)
f0(s) , · · · ,

fn(s)
f0(s)

)
= 0, · · · ,Fr

(
f1(s)
f0(s) , · · · ,

fn(s)
f0(s)

)
= 0 ?

I If yes, for which s values ?

Difficulty

I Several substitutions,

I high degree of polynomials to manipulate.



Plane curves

Let K be a field.
Algebraic parameterization φ is defined as follows

φ := P → P2

(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)) ,

and its image defines the curve C.
We assume that the fi ’s are of degree d for all i = 0, 1, 2.



Plane curves

Implicitization via Sylvester matrix, notation : Syl

T0,T1,T2 : new indeterminates.
I := (f0T1 − f1T0, f0T2 − f2T0) ⊂ K[s, t,T0,T1,T2] ideal. I
contains implicit equation of the curve C.

Example
f0 = s3 − 1

2s
2t + 5

9st
2 − t3, f1 = 14s3 + 2

3s
2t − 3st2 + t3,

f2 = −1
4s

3 − 12s2t − 4
3st

2 − 97t3. Then,
Syl(f0T1 − f1T0, f0T2 − f2T0) =



T1 − 14T0 − 1
2
T1 − 2

3
T0

5
9
T1 + 3T0 −T1 − T0 0 0

0 T1 − 14T0 − 1
2
T1 − 2

3
T0

5
9
T1 + 3T0 −T1 − T0 0

0 0 T1 − 14T0 − 1
2
T1 − 2

3
T0

5
9
T1 + 3T0 −T1 − T0

T2 + 1
4
T0 − 1

2
T2 + 12T0

5
9
T2 + 4

3
T0 −T2 + 97T0 0 0

0 T2 + 1
4
T0 − 1

2
T2 + 12T0

5
9
T2 + 4

3
T0 −T2 + 97T0 0

0 0 T2 + 1
4
T0 − 1

2
T2 + 12T0

5
9
T2 + 4

3
T0 −T2 + 97T0



is a 6× 6 matrix with linear entries in T0,T1,T2, and its determinant yields a
polynomial of degree 6 in T0,T1,T2.



Plane curves

Definition
Syzygy module of the parameterization φ, denoted by Syz, is

Syz(f0, f1, f2) := {(p0, p1, p2) ∈ K[s, t]3 : p0(s, t)f0(s, t)+

p1(s, t)f1(s, t) + p2(s, t)f2(s, t) = 0}.

p0, p1, p2 are called syzygies of f0, f1, f2. Moreover, Syz(f0, f1, f2) is
a free module of K[s, t] with 2 generators p and q in K[s, t]3 :

p := (p0, p1, p2) and q := (q0, q1, q2).



Plane curves

Definition
Syzygy module of the parameterization φ, denoted by Syz, is

Syz(f0, f1, f2) := {(p0, p1, p2) ∈ K[s, t]3 : p0(s, t)f0(s, t)+

p1(s, t)f1(s, t) + p2(s, t)f2(s, t) = 0}.

p0, p1, p2 are called syzygies of f0, f1, f2. Moreover, Syz(f0, f1, f2) is a free
module of K[s, t] with 2 generators p and q in K[s, t]3 :

p := (p0, p1, p2) and q := (q0, q1, q2).

Definition
{p, q} are called µ-basis of the parametric curve, if

I {p, q} is a basis of Syz(f0, f1, f2) and

I p, q have the lowest degree among all the basis of Syz(f0, f1, f2).

Moreover, deg(p) = µ1, deg(q) = µ2 and d = µ1 + µ2. We assume that
µ2 ≥ µ1.



Implicitization by resultant matrices with respect to p, q

Notation
p = p0(s, t)T0 + p1(s, t)T1 + p2(s, t)T2 and
q = q0(s, t)T0 + q1(s, t)T1 + q2(s, t)T2.

Example
f0 = s3 − 1

2s
2t + 5

9st
2 − t3, f1 = 14s3 + 2

3s
2t − 3st2 + t3,

f2 = −1
4s

3 − 12s2t − 4
3st

2 − 97t3.

p0 q0
p1 q1
p2 q2

 =

 2072314393/993502048s + 491833577/124187756t 1007/84s2 + 233/168st + 5431/56t2

−147910417/993502048s − 293063387/1490253072t −97/112s2 − 43/504st − 389/56t2

1568555/248375512s − 9123809/2128932960t −23/42s2 + 97/126st − 15/14t2



Then, µ1 = 1 and µ2 = 2. Syl(p,q) is a matrix of 3× 3 size, with
linear entries in T0,T1,T2, and its determinant yields a polynomial
of degree 3 in T0,T1,T2.



Implicitization by resultant matrices with respect to p, q

Notation
p = p0(s, t)T0 + p1(s, t)T1 + p2(s, t)T2 and
q = q0(s, t)T0 + q1(s, t)T1 + q2(s, t)T2.

p0 q0
p1 q1
p2 q2

 =

 2072314393/993502048s + 491833577/124187756t 1007/84s2 + 233/168st + 5431/56t2

−147910417/993502048s − 293063387/1490253072t −97/112s2 − 43/504st − 389/56t2

1568555/248375512s − 9123809/2128932960t −23/42s2 + 97/126st − 15/14t2



We have µ1 = 1, µ2 = 2.

Definition
Bézout matrix, denoted by Bez(p,q) = (bij)1≤i,j≤µ2 , is defined to be

p(τ, σ)q(s, t)− p(s, t)q(τ, σ)

sτ − tσ
=
∑
i,j=1

bij t
i−1sµ2−i+1τ j−1σµ2−j+1.

I Bez(p,q) is a matrix of 2× 2 size, with only quadratic entries in
T0,T1,T2, and its determinant yields to a polynomial of degree 2µ2

in T0,T1,T2.



Implicitization by resultant matrices with respect to p, q

Notation
p = p0(s, t)T0 + p1(s, t)T1 + p2(s, t)T2 and
q = q0(s, t)T0 + q1(s, t)T1 + q2(s, t)T2.

I Hybird Bézout matrix, HBez(p,q) is composed of the last
µ2 − µ1 rows of Syl(p,q) in coefficients of q and the first µ1

rows of Bez(p,q). Hence, again for the same example
HBez(p,q) is a matrix of 2× 2 size, with linear and quadratic
entries in T0,T1,T2, and its determinant yields a polynomial
of degree d = µ2 + µ1 in T0,T1,T2.

HBez(p,q)T=

(
last row of Syls(p,q) ∗ ∗
1st row of Bezs(p,q) ∗ ∗

)



Hybrid Bézout
p = a0(T1,T2)tµ1 + a1(T1,T2)stµ1−1 + · · · + aµ1

(T1,T2)sµ1 ,

q = b0(T1,T2)tµ2 + b1(T1,T2)stµ2−1 + · · · + bµ2
(T1,T2)sµ2 .

Syl(p, q) =



bµ2
bµ2−1 · · · b0

. . .

. . .

bµ2
bµ2−1 · · · b0

aµ1
aµ1−1 · · · a0

. . .

aµ1
aµ1−1 aµ1−2

. . .

aµ1
aµ1−1 · · · a0



HBez(p, q)T =



last row of Syl(p, q) ∗ · · · ∗
d-1th row of Syl(p, q) ∗ · · · ∗
.
.
. ∗ · · · ∗
d− µ2 + µ1 + 1th row of Syl(p, q) ∗ · · · ∗
1st row of Bez(p, q) ∗ · · · ∗
.
.
. ∗ · · · ∗
µ1th row of Bez(p, q) ∗ · · · ∗



Remark
If µ2 = µ1, then HBez(p, q) does not have any rows of Syl(p, q),
i.e. any rows with linear entries in T0,T1,T2.



Hybrid Bézout
If µ2 − µ1 = 2, then

Syl(p, q) =



bµ2
bµ2−1 · · · b0

. . .

. . .

bµ2
bµ2−1 · · · b0

aµ1
aµ1−1 · · · a0

. . .

aµ1
aµ1−1 aµ1−2 · · · 0

0 aµ1
aµ1−1 · · · a0


The red block in Syl(p, q) corresponds to the monomial basis {sµ1+1tµ2−1, sµ1 tµ2 , · · · , std−1, td} as
columns.

HBez(p, q)T =



last row of Syl(p, q) ∗ · · · ∗
d-1th row of Syl(p, q) ∗ · · · ∗
.
.
. ∗ · · · ∗
d− µ2 + µ1 + 1th row of Syl(p, q) ∗ · · · ∗
1st row of Bez(p, q) ∗ · · · ∗
.
.
. ∗ · · · ∗
µ1th row of Bez(p, q) ∗ · · · ∗



Remark
If µ2 = µ1, then HBez(p, q) does not have any rows of Syl(p, q),
i.e. any rows with linear entries in T0,T1,T2.



Another interpretation of the quadratic part of HBez

Sylvester form of the µ-basis p, q

α := (α1, α2) ∈ Z≥0, such that |α| := α1 + α2 ≤ µ1 − 1.
p and q can be decomposed as

p = sα1+1h1,1 + tα2+1h1,2,

q = sα1+1h2,1 + tα2+1h2,2,

where hi ,j(s, t; x0, x1, x2) are homogeneous polynomials of degree
µi − αj − 1 with respect to the variables s, t and linear in
T0,T1,T2.

Definition
The polynomial

Sylα(p,q) := det

(
h1,1 h1,2

h2,1 h2,2

)
is called Sylvester form of the µ-basis.



Another interpretation of the quadratic part of HBez
α := (α1, α2) ∈ Z≥0, such that |α| := α1 + α2 ≤ µ1 − 1.
p and q can be decomposed as

p = sα1+1h1,1 + tα2+1h1,2,

q = sα1+1h2,1 + tα2+1h2,2,

where hi,j (s, t; x0, x1, x2) are homogeneous polynomials of degree µi − αj − 1 with
respect to the variables s, t and linear in T0,T1,T2.

Definition
The polynomial

Sylα(p, q) := det

(
h1,1 h1,2

h2,1 h2,2

)
is called Sylvester form of the µ-basis.

Theorem
Let ν be an integer such that µ2 − 1 ≤ ν ≤ d − 2. Then the set of d − 1− ν Sylvester
forms

{Sylα(p, q)}|α|=d−2−ν = {
Syl(d−2−ν,0)(p, q), . . . , Syl(0,d−2−ν)(p, q)

}
form a basis of the quadratic part of HBez(p, q).



Summary

Assume deg(fi ) = d ,∀i = 0, 1, 2 and µ2 ≥ µ1.
For a general plane curve of degree d

µ2 =

⌈
d

2

⌉
.

size of the matrix type of resultant matrix degree of determinant

(2d × 2d) Syl(f0T1 − f1T0, f0T2 − f2T0) 2d ,

(d × d) Syl(p,q) d ,

(µ2 × µ2) HBez(p,q) d .

I µ-basis serves to decrease the size of Syl matrix to its half
size,

I HBez(p,q) has half size of Syl(p,q).



Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of µ-basis into higher dimensions.
Let K be a field.

φ := P1 → Pn

(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)) .

Definition
Syzygy module of the parameterization φ, denoted by Syz, is

Syz(f0, · · · , fn) := {(g0, · · · , gn) ∈ K[s, t]n+1 :
∑n

i=0 gi fi = 0}.

g0, · · · , gn are called syzygies of f0, · · · , fn. Moreover, Syz(f0, · · · , fn) is a free module
of K[s, t] with n generators p1, · · · , pn in K[s, t]n+1 : pi := (pi0 , · · · , pin ),∀i = 1, · · · n.

Definition
{p1, · · · , pn} are called µ-basis of the parametric curve, if

I {p1, · · · , pn} is a basis of Syz(f0, · · · , fn) and

I {p1, · · · , pn} have the lowest degree among all the basis of Syz(f0, · · · , fn).

Moreover, deg(pi ) = µi , ∀i = 1, · · · , n, and
∑n

i=1 µi = d . We assume that
µn ≥ · · · ≥ µ1.



Existing method : Syzygy based matrix M

There exist already a method which generalizes Syl of µ-basis into
higher dimensions. Let K be a field.

φ := P → Pn

(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)) .

T0, · · · ,Tn: new indeterminates.

Assumption

µn ≥ · · · ≥ µ1.

M is computed at degree µn + µn−1 − 1, i.e. its rows are in
monomials basis {tµn+µn−1−1, stµn+µn−1−2, · · · , sµn+µn−1−1}, so it
has µn + µn−1 rows with linear entries in T0, · · · ,Tn.



What is M ?

M considers moving lines.

What is a moving line?

A moving line L is

L = A0(s, t)T0 + A1(s, t)T1 + · · ·+ An(s, t)Tn.

We say that L follows the surface if

n∑
i=1

Ai (s, t)φi (s, t) ≡ 0.

L is of degree 1 in T0, · · · ,Tn.



What is M ?

M is constructed by the coefficients of the family of moving lines
of degree µn + µn−1 − 1 over s, t

Mµn+µn−1−1 =


| | |
| | |
L1 | Lr
| | |
| | |


such that(
sµn+µn−1−1, sµn+µn−1−2t, · · · , tµn+µ1−1

)
Mµn+µn−1−1 = [L1, · · · , Lr ].

The Li ’s are the moving lines following the parametrization of the
given curve.



What is M ?

I M considers only linear relations, (as Syl),

I In P2, M is computed at degree µ2 + µ1 − 1 = d − 1, so it
has d rows with linear entries in T0,T1,T2.

size of the matrix type of resultant matrix degree of determinant

(d × d) Syl(p, q) d ,

(d × d) Mµ2+µ1−1 d ,

(µ2 × µ2) HBez(p, q) d .

I M works for higher dimensions, i.e. spaces curves in Pn,
n ≥ 3,

I It is written in a monomial or Bézier basis of degree
µn + µn−1 − 1,

I The rank of M drops for the points on the curve C.



Our new method, notation : QM

Why a new method ?

I QM generalizes Hybrid Bézout to the higher dimensions,

HBez ∈ P2  QM ∈ Pn, n ≥ 3,

I The rows of QM are in monomial basis of degree µn − 1,

number of rows type of matrix

µn + µn−1 Mµn+µn−1−1,

µn QMµn .

We recall that for a general curve µi =
⌊
d
n

⌋
, for

i = 1, · · · n − 1, and µn =
⌈
d
n

⌉
, hence QM has almost the half

rows of M.

I The rank of QM drops for the points (x0, · · · , xn) on the
curve C ∈ Rn.



Our new method QM

QM considers both moving lines and moving quadrics.

What is a moving quadric?

A moving quadric L is

Q = A00(s, t)T 2
0 + A01(s, t)T0T1 + · · ·+ Ann(s, t)T 2

n .

We say that Q follows the surface if∑
1≤i≤j≤n

Aij(s, t)φi (s, t)φj(s, t) ≡ 0.

Q is of degree 2 in T0, · · ·Tn.



Our new method QM

Remark
Let L be a moving line following the parameterization φ. Then,

TiL = Ti (A0(s, t)T0 + · · ·+ An(s, t)Tn),∀i = 0, · · · , n

is a moving quadric following the parameterization φ.

Hence, we consider the subvector space of moving quadrics which
are not coming from moving lines.



Our new method QM

What is QM?
QM is constructed by the coefficients of the family of moving
quadrics which are not coming from moving lines, and moving lines
of degree µn − 1 over s, where µn ≥ · · · ≥ µ1.

QMµn−1 =


| | | | | |
| | | | | |
L1 | Lr Q1 | Qk

| | | | | |
| | | | | |


such that(

sµn−1, sµn−2t, · · · , tµn−1
)
QMµn−1 = [L1, · · · , Lr ,Q1, · · ·Qk ].

The Li ’s are the moving lines and the Qj ’s are the moving quadrics
following the parametrization of the given curve.



Main result

We have a compact implicit matrix QM of a parametric curve C in
Pn with linear and quadratic entires in T0, · · · ,Tn, in monomial
basis of degree µn − 1, such that on the points (x0, · · · , xn) ∈ C,
the rank of QM(x1, · · · , xn) drops.



Comparisons

For a general degree 8 parametric curve, having µ-basis of degree
(2, 3, 3), we have following number of linear and quadratic
relations according to monomial basis in chosen degree.
BLUE : M,
RED : QM.

degree of monomial basis linear relations quadratic relations size of QM
1 0 2 2× 2
2 1 7 3× 8
3 4 4 4× 8
4 7 1 5× 8
5 10 0 6× 10
6 13 0 7× 13
7 16 0 8× 16

I M appears from the degree 5 which is
µn + µn−1 − 1 = 3 + 3− 1 = 5.

I QM appears from the degree 2 which is µn − 1 = 3− 1 = 2.



Is point on the curve?

I Check the drop of rank of QM evaluated at given point.

d µi ’s M size Mrep ms. rank ms. QM size QM ms rank ms
5 (2,3) 5x5 9 4.13 3x3 14 1.69
5 (1,2,2) 4x7 7 4.3 2x5 18 1.62
9 (3,3,3) 6x9 12 8.95 3x9 38 4.64
9 (1,4,4) 8x15 18 18.17 4x9 50 5.18

10 (5,5) 10x10 15 17.83 5x5 28 4.71
15 (1,7,7) 14x27 77 71.3 7x15 282 13.51

I QM has half number of M,

I Computation of QM takes more time than the computation of
M, however for instance computation of drop of rank is faster
than M.

Theorem
Drop of rank of QM at a given point on C gives multiplicty of the
point.



Thanks!


