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Grobner bases

> Valuable tool for many questions related to polynomial equations
(solving, elimination, dimension of the solutions...)
> Classically used for polynomials over fields

> Some applications with coefficients in general rings (elimination, combinatorics...)

Definition (Leading term, monomial, coefficient)

Rring, A= R[Xi, ..., X,] with a monomial order <, f = 3 a; X"
> Leading term LT(f) = a; X% with X% > X% if j #£ i
» Leading monomial LM(f) = X*
» Leading coefficient LC(f) = a;

Definition (Weak/strong Grobner basis)

GCl={f, ., fa)
> Gis a weak Grobner basis <= (LT(f) : f € I) = (LT(g) : g € G)
> G is astrong Grobner basis <=> for all f € I, f reduces to 0 modulo G

Equivalent if R is a field



Buchberger’s algorithm (Ris a field)

(Strong) S-polynomial:

fiseoosSm
( T(i,j) = lem(LT(g), LT(g))

_TG0),  T())
/_\ S-Pol(gi, ) = LT(gi)gi B LT(gj)gj

Grobner basis S-pol

(Strong) reduction
4—/\/\/\/\,—|:|<— fE€AgE Gst LT(f) = XLT(g)

Reduction f ~ h=f— cXLT(g) (and repeat)



Signatures (R is afield)

[Faugére 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

> ldea: keep track of the representation g = >, qifi forg € (fi,..., fm)
» Work in the module A" = Ae; @ - - - @ Aen,

> The algorithm could keep track of the full representation in the module...



Signatures (R is afield)

[Faugére 2002 ; Gao, Guan, Volny 2010 ; Arri, Perry 2011... Eder, Faugére 2017]

> ldea: keep track of the representation g = >, qifi forg € (fi,..., fm)
» Work in the module A" = Ae; @ - - - @ Aen,
> The algorithm could keep track of the full representation in the module...

But it is expensive!

> Instead define a signature s(g) of g as

s(g) = LT(g;)e;j for some representation g = Z qifi, gj being the last non-zero coef.
i=1
> Signatures are ordered by
aXbe; < a'Xblej < i<jori=jand xb < Xb’

> Keeping track of the signature is free if we restrict to regular S-pols and reductions!



Buchberger’s algorithm, with signatures (Ris a field)

(Strong) S-polynomial:

fisooosfm
( 6.5(g) (i, j) = lem(LT(g), LT(g))
€1,...,€m nS T(i,j) T(i’j)
5-Grobner basis S-pol ’
& ’ Regular: T(i’J) s(g) > ( ) s(g)
U ) "8 7 () "\E
S(0.) = 1y Jo(e)

&}
(Strong) reduction:

I:"—O <«— N NN— |+— fEeAgEeGst LT(f) = X°LT(g)

S(i, j) (i, j) Rjgutlér (i, j) f s h=f — X°LT(g) (and repeat)
reduenen Regular: s(f) > X“s(g)
s(h) = s(f)




Consequences of signatures (Ris a field)

Key property

Buchberger’s algorithm with signatures computes GB elements with increasing signatures.

Main consequence

Buchberger’s algorithm with signatures is correct!

Then we can add criteria...
Singular criterion: eliminate some redundant computations

If 5(g) ~ s(g) then after regular reduction, LM(g) = LM(g").

F5 criterion: eliminate Koszul syzygies fifi — fifi = 0

If 5(g) = LT(g')e; and 5(g") = *e; for some indices i < j, then g reduces to 0 modulo the
already computed basis.



Context and main results: what about rings?
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General rings

Principal domains

Euclidean domains
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Strong

Lichtblau, Kandri-Rodi Kapur

Strong S-pols
Strong reductions
G-pols

LC reductions
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Main difficulty: how to order the signatures with their coefficients?

> Eder, Popescu 2017: total order using absolute value of the coefficients

— Impossible to avoid signature drops, signatures can decrease

> F,V 2018: partial order disregarding the coefficients

— No signature drops, signatures don’t decrease (but they may not increase)

» This work: same technique and results for Méller’s strong GB algorithm



Moller’s weak GB algorithm (R is a Noetherian ring)

Joeodm Weak S-polynomial:
G=1{g:jc)t M) = lem(LM(g)) : j € J)

( Weak@ $-Pol(G)) = CLM(g JLM

Weak GB

YYVYY

8s

Weak reduction:
<—[\:|<—/\/\/\/\,—|:|<— feEAgG,. ...8 € Gst.
Weak reduction LM(f) = X“LT(g)
{ LC(f) = >_clC(g)
frorh=f—Y eXg

[Moller 1988] (and repeat)



Moller’s weak GB algorithm, with signatures

foeofo
< G ={g:jcJ}

Weak 5-GB

YYYY

( Weak@

g375(g5)

BT VA

s(J) 7 s(y)  Resular ()

weak reduction

[Méller 1988]
[F, V 2018]

(Ris a Principal Ideal Domain)

Weak S-polynomial:

MUJ) = lem(LM(g) : j € J)
S-Pol(G)) = cLM(g - Y b
Regular: Vj, fuiys(gs) > o Mm (g,)

)
[M(z) ")

sU) =

Weak reduction:
fEAg,....8 € Gst.
LM(f) = X“LT(g;)
{ LC(f) = 22 alC(g)
[ h=f=3 X
(and repeat)
Regular: Vi, s(f) > X%s(g:)
s(h) = s(f)



From weak to strong

fiyeoo s Sm

Weak GB

{g:je)}

( Weak S-pol

YYVYY

D\

Weak reduction

(Ris a PID)
Weak S-pols and reductions:
Same as in Moller’s weak GB

Strong S-pols and reductions:

Same as in Buchberger



From weak to strong (Ris a PID)

fiyeoo s Sm

Weak S-pols and reductions:

8i
Same as in Méller’s weak GB

Weak GB Strong S-pol
' Strong S-pols and reductions:

J \\ Same as in BUChberger

Weak reduction




From weak to strong (Ris a PID)

fiyeoo s Sm

g Weak S-pols and reductions:

/\ Same as in Moller’s weak GB
Weak GB Strong S-pol
W Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:
f=aX“+...,g=bX +...

< "N |— X" = lem( X%, X?)

Weak reduction d = gcd(a, b) = au+ bv

/ h=G-Pol(f,g) = ulaf +visg
“Completion”

A




Moller’s strong GB algorithm (Ris a PID)

fiyeoo s Sm

g Weak S-pols and reductions:

/\ Same as in Moller’s weak GB
Weak GB Strong S-pol
W Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:
— X® B
Strong reduction f=aX®+...,g=bX"+...

< "N |— X" = lem( X%, X?)

d = ged(a, b) = au+ bv

/ h:G—Pol(f,g):u;(%f—i— v))%g
“Completion”

A




Moller’s strong GB algorithm, with signatures (Ris a PID)

fiyeoo s Sm

. 5(g) Weak S-pols and reductions:

Same as in Méller’s weak GB

Weak s-GB Strong S-pol
j Strong S-pols and reductions:

W
Same as in Buchberger
o G-polynomial:
) f=aX“+...,g=bX 4+ ...

S(i, j) 5 < NAN— +— X? = lem(X*, X?)

S(i,j) ~ Regular — g(; j) d = ged(a, b) = au+ bv
weak reduction

/ h:G—Pol(f,g):u;(%f—i— v))%g
“Completion”

A




Moller’s strong GB algorithm, with signatures (Ris a PID)

fiyeoo s Sm

. 5(g) Weak S-pols and reductions:

Same as in Méller’s weak GB

Weak s-GB Strong S-pol
W Strong S-pols and reductions:

Same as in Buchberger

& G-polynomial:
Regular ? o 3
—0 strong reduction f=aX®+...,g=bX"+...
s(i.) ] o «— " NANAN—] J+— X7 = lem(X*, X?)
S(i, j) S(i,j) d = ged(a, b) = au+ bv

- _ X X7

| / ) h= G-F’Ol(f7 g) = Uﬁf + Vﬁg

? G@ Strong GB =dX'+...
“Completion”

A




Moller’s strong GB algorithm, with signatures (Ris a PID)

Siooo o fm
g.5(g) Weak S-pols and reductions:

' /\ Same as in Moller’s weak GB
Weak s-GB Strong S-pol
W Strong S-pols and reductions:

Same as in Buchberger

& G-polynomial:
Regular o 3
=0 strong reduction f=aX+.... g=bX"+...
s(i) L] o AN J+— X7 = lem( X, X?)

S(i, j) S(i,j) d = ged(a, b) = au+ bv

s X7 X7

b e T PR s e
G-pol B Strong 5-GB =dX7+...
Completion” - o
A o(h) = max(3z5(f), 379(8))

________________________ o(h) may be > s(G-Pol(f, g)) !



Results

> Signature-based variant of Maller’s strong GB algorithm
» Computes strong s-Grobner bases over principal domains
> Signatures (even o) do not decrease throughout the algorithm
> Proof of correctness and termination
» Compatible with Buchberger’s criteria and signature criteria

> Implemented and tested in Magma


http://arxiv.org/abs/1802.01388
http://arxiv.org/abs/1901.09586
http://arxiv.org/abs/1901.09586

Experimental data

Toy implementation of the algorithm in Magma:
https://github.com/ThibautVerron/SignatureMoller

Algorithm

Pairs

S-pols  Coprime Chain F5 Sing. 1-sing. 0 red.
Weak, sigs 2227 51 2125 51 0 0
Strong, no sigs 1191 344 251 596 282
Strong, sigs 472 178 157 153 115 1 6 0

Katsura-3 system (in Z[X1, ..., Xa])
Algorithm Pairs  S-pols Coprime Chain F5 Sing. 1-sing. 0 red.
Strong, no sigs 2712 837 759 1116 739
Strong, sigs 1594 603 509 517 388 9 84 0

Katsura-4 system (in Z[X1,

e Xs])


https://github.com/ThibautVerron/SignatureMoller

Results and future work

> Signature-based variant of Maller’s strong GB algorithm
» Computes strong s-Grobner bases over principal domains
> Signatures (even o) do not decrease throughout the algorithm
> Proof of correctness and termination
» Compatible with Buchberger’s criteria and signature criteria
> Implemented and tested in Magma
> Main bottlenecks: basis growth and coefficient swell
> Next steps, work on those problems:
> For basis growth: more inclusive singular criterion?
> For coefficient swell: further optimizations over Euclidean rings?
> Lichtblau / Kandri-Rodi, Kapur’s idea : Euclidean reduction of leading coefficients


http://arxiv.org/abs/1802.01388
http://arxiv.org/abs/1901.09586
http://arxiv.org/abs/1901.09586

Results and future work

> Signature-based variant of Maller’s strong GB algorithm
Computes strong s-Grobner bases over principal domains
Signatures (even o) do not decrease throughout the algorithm
Proof of correctness and termination

Compatible with Buchberger’s criteria and signature criteria

Yy vVVvVY

> Implemented and tested in Magma
> Main bottlenecks: basis growth and coefficient swell
> Next steps, work on those problems:
> For basis growth: more inclusive singular criterion?

> For coefficient swell: further optimizations over Euclidean rings?
> Lichtblau / Kandri-Rodi, Kapur’s idea : Euclidean reduction of leading coefficients

Thank you for your attention!
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Algorithm for Computing Grobner Bases over Principal Ideal Domains’. [n: ArXiv e-prints. arXiv:
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[cs.SC]
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