Signature-based Möller's algorithm for strong Gröbner bases over PIDs

Maria Francis¹, Thibaut Verron²

- 1. Indian Institute of Technology Hyderabad, Hyderabad, India
- 2. Institute for Algebra, Johannes Kepler University, Linz, Austria

Journées Nationales de Calcul Formel, Luminy, 5 février 2019

Gröbner bases

- Valuable tool for many questions related to polynomial equations (solving, elimination, dimension of the solutions...)
- Classically used for polynomials over fields
- ▶ Some applications with coefficients in general rings (elimination, combinatorics...)

Definition (Leading term, monomial, coefficient)

R ring, $A = R[X_1, ..., X_n]$ with a monomial order $<, f = \sum a_i \mathbf{X}^{b_i}$

- ▶ Leading term LT(f) = $a_i \mathbf{X}^{b_i}$ with $\mathbf{X}^{b_i} > \mathbf{X}^{b_j}$ if $j \neq i$
- ▶ Leading monomial $LM(f) = \mathbf{X}^{b_i}$
- ▶ Leading coefficient $LC(f) = a_i$

Definition (Weak/strong Gröbner basis)

$$G \subset I = \langle f_1, \ldots, f_n \rangle$$

- ▶ *G* is a weak Gröbner basis $\iff \langle \mathsf{LT}(f) : f \in I \rangle = \langle \mathsf{LT}(g) : g \in G \rangle$
- ▶ *G* is a strong Gröbner basis \iff for all $f \in I$, f reduces to 0 modulo G

Equivalent if R is a field

(Strong) S-polynomial:

$$T(i,j) = \operatorname{lcm}(\operatorname{LT}(g_i), \operatorname{LT}(g_j))$$

$$S-\operatorname{Pol}(g_i, g_j) = \frac{T(i,j)}{\operatorname{LT}(g_i)}g_i - \frac{T(i,j)}{\operatorname{LT}(g_i)}g_j$$

(Strong) reduction:

$$f \in A, g \in G \text{ s.t. } \mathsf{LT}(f) = c\mathbf{X}^a \mathsf{LT}(g)$$

 $f \leadsto h = f - c\mathbf{X}^a \mathsf{LT}(g) \text{ (and repeat)}$

[Faugère 2002; Gao, Guan, Volny 2010; Arri, Perry 2011... Eder, Faugère 2017]

- ▶ Idea: keep track of the representation $g = \sum_i q_i f_i$ for $g \in \langle f_1, \dots, f_m \rangle$
- ▶ Work in the module $A^m = Ae_1 \oplus \cdots \oplus Ae_m$
- ► The algorithm could keep track of the full representation in the module... But it is expensive!
- ▶ Instead define a signature $\mathfrak{s}(g)$ of g as

$$\mathfrak{s}(g) = \mathsf{LT}(q_j)e_j$$
 for some representation $g = \sum_{i=1}^m q_i f_i$, q_j being the last non-zero coef

Signatures are ordered by

$$a \mathbf{X}^b e_i < a' \mathbf{X}^{b'} e_j \iff i < j \text{ or } i = j \text{ and } \mathbf{X}^b < \mathbf{X}^{b'}$$

▶ Keeping track of the signature is free if we restrict to regular S-pols and reductions!

[Faugère 2002; Gao, Guan, Volny 2010; Arri, Perry 2011... Eder, Faugère 2017]

- ▶ Idea: keep track of the representation $g = \sum_i q_i f_i$ for $g \in \langle f_1, \dots, f_m \rangle$
- ▶ Work in the module $A^m = Ae_1 \oplus \cdots \oplus Ae_m$
- ► The algorithm could keep track of the full representation in the module... But it is expensive!
- ▶ Instead define a signature $\mathfrak{s}(g)$ of g as

$$\mathfrak{s}(g) = \mathsf{LT}(q_j)e_j$$
 for some representation $g = \sum_{i=1}^m q_i f_i$, q_j being the last non-zero coef.

Signatures are ordered by

$$a\mathbf{X}^b e_i < a' \mathbf{X}^{b'} e_j \iff i < j \text{ or } i = j \text{ and } \mathbf{X}^b < \mathbf{X}^{b'}$$

▶ Keeping track of the signature is free if we restrict to regular S-pols and reductions!

(Strong) S-polynomial:

$$T(i,j) = \operatorname{lcm}(\operatorname{LT}(g_i), \operatorname{LT}(g_j))$$

$$S-\operatorname{Pol}(g_i, g_j) = \frac{T(i,j)}{\operatorname{LT}(g_i)} g_i - \frac{T(i,j)}{\operatorname{LT}(g_i)} g_j$$

Regular:
$$\frac{T(i,j)}{\mathsf{LT}(g_i)}\mathfrak{s}(g_i) > \frac{T(i,j)}{\mathsf{LT}(g_j)}\mathfrak{s}(g_j)$$
$$S(i,j) = \frac{T(i,j)}{\mathsf{LT}(g_i)}\mathfrak{s}(g_i)$$

(Strong) reduction:

$$f \in A, g \in G \text{ s.t. } \mathsf{LT}(f) = c\mathbf{X}^a \mathsf{LT}(g)$$

 $f \leadsto h = f - c\mathbf{X}^a \mathsf{LT}(g) \text{ (and repeat)}$
Regular: $\mathfrak{s}(f) > \mathbf{X}^a \mathfrak{s}(g)$

 $\mathfrak{s}(h)=\mathfrak{s}(f)$

Key property

 $Buch berger's \ algorithm \ with \ signatures \ computes \ GB \ elements \ with \ \underline{increasing \ signatures}.$

Main consequence

Buchberger's algorithm with signatures is correct!

Then we can add criteria...

Singular criterion: eliminate some redundant computations

If $\mathfrak{s}(g) \simeq \mathfrak{s}(g')$ then after regular reduction, LM(g) = LM(g').

F5 criterion: eliminate Koszul syzygies $f_i f_j - f_j f_i = 0$

If $\mathfrak{s}(g) = \mathsf{LT}(g')e_j$ and $\mathfrak{s}(g') = \star e_i$ for some indices i < j, then g reduces to 0 modulo the already computed basis.

Type of rings	General rings	Principal domains	Euclidean domains		
Type of GB	Weak	Strong	Strong		
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur		
	Weak S-pols Weak reductions	Strong S-pols	Strong S-pols		
Techniques		Strong reductions G-pols	Strong reductions G-pols		
			LC reductions		

- ► Eder, Popescu 2017: total order using absolute value of the coefficients
 → Impossible to avoid signature drops, signatures can decrease
- ► F, V 2018: partial order disregarding the coefficients
 → No signature drops, signatures don't decrease (but they may not increase
- This work: same technique and results for Möller's strong GB algorithm

Type of rings	General rings	Principal domains	Euclidean domains		
Type of GB	Weak	Strong	Strong		
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur		
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols Strong reductions G-pols LC reductions		
With signatures					

Main difficulty: how to order the signatures with their coefficients?

- ► Eder, Popescu 2017: total order using absolute value of the coefficient.

 → Impossible to avoid signature drops, signatures can decrease
- ► F, V 2018: partial order disregarding the coefficients
 → No signature drops, signatures don't decrease (but they may not increase
 - This work: same technique and results for Möller's strong GB algorithm

Type of rings	General rings Principal domains		Euclidean domains		
Type of GB	Weak	Strong	Strong		
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur		
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols		
			Strong reductions		
			G-pols		
			LC reductions		
With signatures			Eder, Popescu 2017		

Main difficulty: how to order the signatures with their coefficients?

- ▶ Eder, Popescu 2017: total order using absolute value of the coefficients
 - ightarrow Impossible to avoid signature drops, signatures can decrease
- F, V 2018: partial order disregarding the coefficients
- ► This work: same technique and results for Möller's strong GB algorithm

Type of rings	General rings	Principal domains	Euclidean domains		
Type of GB	Weak Strong		Strong		
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapui		
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols		
			Strong reductions		
			G-pols		
			LC reductions		
With signatures	F, V 2018 (for PIDs)		Eder, Popescu 2017		

Main difficulty: how to order the signatures with their coefficients?

- ▶ Eder, Popescu 2017: total order using absolute value of the coefficients
 - ightarrow Impossible to avoid signature drops, signatures can decrease
- ▶ F, V 2018: partial order disregarding the coefficients
 - \rightarrow No signature drops, signatures don't decrease (but they may not increase)
- ► This work: same technique and results for Möller's strong GB algorithm

Type of rings	General rings Principal domain		Euclidean domains		
Type of GB	Weak Strong		Strong		
Algorithm	Möller weak	Möller strong	Lichtblau, Kandri-Rodi Kapur		
Techniques	Weak S-pols Weak reductions	Strong S-pols Strong reductions G-pols	Strong S-pols		
			Strong reductions		
reemingaes			G-pols		
			LC reductions		
With signatures	F, V 2018 (for PIDs)	This work	Eder, Popescu 2017		

Main difficulty: how to order the signatures with their coefficients?

- ▶ Eder, Popescu 2017: total order using absolute value of the coefficients
 - → Impossible to avoid signature drops, signatures can decrease
- ► F, V 2018: partial order disregarding the coefficients
 - → No signature drops, signatures don't decrease (but they may not increase)
 - This work: same technique and results for Möller's strong GB algorithm

[Möller 1988]

Weak S-polynomial:

$$M(J) = \operatorname{lcm}(\operatorname{LM}(g_j) : j \in J)$$
S-Pol $(G_J) = c \frac{M(J)}{\operatorname{LM}(g_s)} g_s - \sum b_j \frac{M(J)}{\operatorname{LM}(g_s)} g_j$

Weak reduction:

$$f \in A, g_1, \dots, g_k \in G \text{ s.t.}$$

$$\begin{cases} \mathsf{LM}(f) = \mathbf{X}^{a_i} \mathsf{LT}(g_i) \\ \mathsf{LC}(f) = \sum c_i \mathsf{LC}(g_i) \end{cases}$$
 $f \leadsto h = f - \sum c_i \mathbf{X}^{a_i} g_i$
(and repeat)

Möller's weak GB algorithm, with signatures (R is a Principal Ideal Domain)

Weak S-polynomial:

$$M(J) = \operatorname{lcm}(LM(g_j) : j \in J)$$

$$S-Pol(G_J) = c \frac{M(J)}{LM(g_s)} g_s - \sum b_j \frac{M(J)}{LM(g_j)} g_j$$

Regular: $\forall j, \frac{M(J)}{LM(g_s)} \mathfrak{s}(g_s) > \frac{M(J)}{LM(g_s)} \mathfrak{s}(g_j)$

$$S(J) = c \frac{M(i,j)}{\mathsf{L}M(g_i)} \mathfrak{s}(g_i)$$

Weak reduction:

$$f \in A, g_1, \ldots, g_k \in G$$
 s.t.

$$\begin{cases} \mathsf{LM}(f) = \mathbf{X}^{a_i} \mathsf{LT}(g_i) \\ \mathsf{LC}(f) = \sum c_i \mathsf{LC}(g_i) \end{cases}$$

$$f \rightsquigarrow h = f - \sum c_i \mathbf{X}^{a_i} g_i$$
 (and repeat)

Regular: $\forall i, \ \mathfrak{s}(f) > \mathbf{X}^{a_i} \mathfrak{s}(g_i)$

$$\mathfrak{s}(h)=\mathfrak{s}(f)$$

Strong S-pols and reductions: Same as in Buchberger

Strong S-pols and reductions: Same as in Buchberger

G-polynomial:

$$f = a\mathbf{X}^{\alpha} + \dots, g = b\mathbf{X}^{\beta} + \dots$$

 $\mathbf{X}^{\gamma} = \operatorname{lcm}(\mathbf{X}^{\alpha}, \mathbf{X}^{\beta})$

$$h = G\text{-Pol}(f, g) = u \frac{\mathbf{x}^{\gamma}}{\mathbf{x}^{\alpha}} f + v \frac{\mathbf{x}^{\gamma}}{\mathbf{x}^{\beta}} g$$

 $d = \gcd(a, b) = au + bv$

$$=d\mathbf{X}^{\gamma}+\ldots$$

Strong S-pols and reductions: Same as in Buchberger

G-polynomial:

$$f = a\mathbf{X}^{\alpha} + \dots, g = b\mathbf{X}^{\beta} + \dots$$

 $\mathbf{X}^{\gamma} = \operatorname{lcm}(\mathbf{X}^{\alpha}, \mathbf{X}^{\beta})$

$$d = \gcd(a, b) = au + bv$$

$$h = G-Pol(f,g) = u\frac{\mathbf{x}^{\gamma}}{\mathbf{y}^{\alpha}}f + v\frac{\mathbf{x}^{\gamma}}{\mathbf{y}^{\alpha}}g$$

$$=d\mathbf{X}^{\gamma}+\ldots$$

Strong S-pols and reductions:

Same as in Buchberger

G-polynomial:

$$f = a\mathbf{X}^{\alpha} + \dots, g = b\mathbf{X}^{\beta} + \dots$$

$$\mathbf{X}^{\gamma} = \operatorname{lcm}(\mathbf{X}^{\alpha}, \mathbf{X}^{\beta})$$

$$d=\gcd(a,b)=au+bv$$

$$h = G-Pol(f, g) = u \frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\alpha}} f + v \frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\beta}} g$$
$$= d \mathbf{X}^{\gamma} + \dots$$

Strong S-pols and reductions: Same as in Buchberger

G-polynomial:

$$f = a\mathbf{X}^{\alpha} + \dots, g = b\mathbf{X}^{\beta} + \dots$$

 $\mathbf{X}^{\gamma} = \operatorname{lcm}(\mathbf{X}^{\alpha}, \mathbf{X}^{\beta})$

$$d = \gcd(a, b) = au + bv$$

$$h = G\text{-Pol}(f, g) = u \frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\alpha}} f + v \frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\beta}} g$$
$$= d \mathbf{X}^{\gamma} + \dots$$

Strong S-pols and reductions: Same as in Buchberger

G-polynomial:

$$f = a\mathbf{X}^{\alpha} + \dots, g = b\mathbf{X}^{\beta} + \dots$$

 $\mathbf{X}^{\gamma} = \operatorname{lcm}(\mathbf{X}^{\alpha}, \mathbf{X}^{\beta})$

$$d=\gcd(a,b)=au+bv$$

$$h = G-Pol(f,g) = u \frac{\mathbf{X}^{\gamma}}{\mathbf{Y}^{\alpha}} f + v \frac{\mathbf{X}^{\gamma}}{\mathbf{Y}^{\beta}} g$$

$$\sigma(h) = \max(\frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\alpha}}\mathfrak{s}(f), \frac{\mathbf{X}^{\gamma}}{\mathbf{X}^{\beta}}\sigma(g))$$

$$\sigma(h) \text{ may be } > \mathfrak{s}(G-\text{Pol}(f,g))!$$

 $= d \mathbf{X}^{\gamma} + \dots$

Results

- ► Signature-based variant of Möller's strong GB algorithm
 - ► Computes strong \$-Gröbner bases over principal domains
 - Signatures (even σ) do not decrease throughout the algorithm
 - Proof of correctness and termination
 - Compatible with Buchberger's criteria and signature criteria
- Implemented and tested in Magma

Experimental data

Toy implementation of the algorithm in Magma: https://github.com/ThibautVerron/SignatureMoller

Algorithm	Pairs	S-pols	Coprime	Chain	F5	Sing.	1-sing.	0 red.
Weak, sigs	2227	51	0	0	2125	51	0	0
Strong, no sigs	1191	344	251	596	0	0	0	282
Strong, sigs	472	178	157	153	115	1	6	0

Katsura-3 system (in $\mathbb{Z}[X_1,...,X_4]$)

Algorithm	Pairs	S-pols	Coprime	Chain	F5	Sing.	1-sing.	0 red.
Strong, no sigs	2712	837	759	1116	0	0	0	739
Strong, sigs	1594	603	509	517	388	9	84	0

Katsura-4 system (in $\mathbb{Z}[X_1,...,X_5]$)

Results and future work

- ► Signature-based variant of Möller's strong GB algorithm
 - ► Computes strong 5-Gröbner bases over principal domains
 - Signatures (even σ) do not decrease throughout the algorithm
 - ▶ Proof of correctness and termination
 - ► Compatible with Buchberger's criteria and signature criteria
- ► Implemented and tested in Magma
- Main bottlenecks: basis growth and coefficient swell
- Next steps, work on those problems:
 - For basis growth: more inclusive singular criterion?
 - ► For coefficient swell: further optimizations over Euclidean rings?
 - Lichtblau / Kandri-Rodi, Kapur's idea : Euclidean reduction of leading coefficients

Results and future work

- ► Signature-based variant of Möller's strong GB algorithm
 - Computes strong \$-Gröbner bases over principal domains
 - Signatures (even σ) do not decrease throughout the algorithm
 - Proof of correctness and termination
- Compatible with Buchberger's criteria and signature criteria
- ► Implemented and tested in Magma
- ► Main bottlenecks: basis growth and coefficient swell
- Next steps, work on those problems:
 - ► For basis growth: more inclusive singular criterion?
 - ► For coefficient swell: further optimizations over Euclidean rings?
 - Lichtblau / Kandri-Rodi, Kapur's idea : Euclidean reduction of leading coefficients

Thank you for your attention!

More information and references:

- Möller's weak GB with signatures ► Maria Francis and Thibaut Verron (2018). 'A Signature-based Algorithm for Computing Gröbner Bases over Principal Ideal Domains'. In: ArXiv e-prints. arXiv: 1802.01388 [cs.SC]
- Möller's strong GB with signatures ► Maria Francis and Thibaut Verron (2019). 'Signature-based Möller's Algorithm for strong Gröbner Bases over PIDs'. In: ArXiv e-prints. arXiv: 1901.09586 [cs.SC]