OpenDreamKit's Workpackage 5: High Performance Mathematical Computing

> Clément Pernet **7** and all participants of Workpackage 5

Journées Nationales du Calcul Formel 2019

Luminy, Feb 4, 2019

Goal: delivering high performance to math-software users

Goal: delivering high performance to math-software users

Harnessing modern hardware \rightsquigarrow parallelisation

- in-core parallelism (SIMD vectorisation)
- multi-core parallelism
- distributed computing: clusters, cloud

Goal: delivering high performance to math-software users

Languages

Computational Maths software uses high level languages (e.g. Python)
 High performance delivered by languages close to the metal (C, assembly)
 ~> compilation, automated optimisation

High performance mathematical computing

Goal:

- Improve/Develop parallelization of software components
- Expose them through the software stack
- Offer High Performance Computing to VRE's users

Milestone M8: Seamless use of parallel computing architecture in the VRE (proof of concept)

Astrid wants to run compute intensive routines involving both dense linear algebra and combinatorics. She has access through a JupyterHub-based VRE to a high end multi-core machine which includes a vanilla SAGE installation. She automatically benefits from the HPC features of the underlying specialized libraries (LinBox, ...). This is a proof of concept of the overall framework to integrate the HPC advances of specialized libraries into a general purpose VRE. It will prepare the final integration of a broader set of such parallel features for the end of the project

Organization of WorkPackage 5

Component	Review 1	Review 2	Final review R
T5.1 Pari/GP		T PAF	R B D5.16
T5.2 GAP			D5.15
T5.3 LinBox		D5.12	D5.14
T5.4 Singular	D5.6, D5.7		D5.13
T5.5 MPIR	D5.5, D5.7		
T5.6 Combinatorics	D5.1	D5.11	
T5.7 Pythran	D5.2	D5.11	
T5.8 SunGrid Engine	D5.3		

Overall

- ► 20+ software releases
- ▶ 7 research papers

Improving Software Systems

T5.1: Pari T5.2: GAP T5.4: Singular

Exact linear algebra (T5.3)

Exact linear algebra algorithms and implementations (D5.12). Distributed computing

Improving Software Systems

T5.1: Pari T5.2: GAP T5.4: Singular

Exact linear algebra (T5.3)

Exact linear algebra algorithms and implementations (D5.12). Distributed computing

D5.16: Pari Suite release, fully supporting parallelization

- Generic parallelization engine is now mature (released since Nov 2016).
 Support POSIX-threads and MPI.
- Current work: applying it throughout the library
 - Chinese remaindering
 - Rational linear algebra
 - Discrete logarithm
 - Resultants
 - APRCL primality testing

C. Pernet: High Performance Mathematical Computing 7 2019-02-04

D5.15: Final report of GAP development

- 8 releases were produced
- Towards an integration of HPC-GAP: main release GAP-4.9
 - Build system refactoring
 - Ability to compile in HPC-GAP compatibility mode
- Work in progress:
 - Multithreaded linear algebra: at the level of the Meataxe library
 - Introspection functionalities: on-the-fly optimisation decision

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition
 Parallelization of the (sparse) multiplication

 $(1 + x + y + 2z^{2} + 3t^{3} + 5u^{5})^{21} \times (1 + u + t + 2z^{2} + 3y^{3} + 5x^{5})^{21}$

# cores	\mathbb{Z}	$\mathbb{Z}_{2^{64}-1}$
1	34145(1.0×)	30349(1.0×)
2	14856(2.3x)	12641(2.4×)
3	10844(3.1×)	8294(3.6x)
4	7205(4.7x)	6274(4.8x)
5	7621(4.4x)	5315(5.7x)
6	6156(5.5×)	4152(7.3x)
7	5679(6.0x)	3739(8.1x)
8	4458(7.6×)	3047(9.9×)

T5.4 Singular: Parallel sparse polynomial multiplication

FLINT now supports fast sparse multivariate polynomials:

- addition, subtraction, multiplication,
- division, division with remainder, GCD
- evaluation, partial evaluation, composition
 Parallelization of the (sparse) multiplication

 $(1 + x + y + 2z^2 + 3t^3 + 5u^5)^{21} \times (1 + u + t + 2z^2 + 3y^3 + 5x^5)^{21}$

# cores	\mathbb{Z}	$\mathbb{Z}_{2^{64}-1}$
1	34145(1.0×)	30349(1.0×)
2	14856(2.3x)	12641(2.4x)
3	10844(3.1x)	8294(3.6x)
4	7205(4.7x)	6274(4.8x)
5	7621(4.4x)	5315(5.7x)
6	6156(5.5x)	4152(7.3x)
7	5679(6.0x)	3739(8.1x)
8	4458(7.6x)	3047(9.9×)

- ► Planned improvements to the memory manager ⇒ closer to linear scaling
- Parallel division and GCD implementations are in progress.
- Integration into Factory/Singular remains to be done

C. Pernet: High Performance Mathematical Computing 9 2019-02-04

Exact linear algebra (T5.3)

Exact linear algebra algorithms and implementations (D5.12). Distributed computing

Mathematics is the art of reducing any problem to linear algebra

C. Pernet: High Performance Mathematical Computing 11 2019-02-04

Mathematics is the art of reducing any problem to linear algebra

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Mathematics is the art of reducing any problem to linear algebra

Linear algebra: a key building block for HPC

Similarities with numerical HPC

- central elementary problem to which others reduce to
- (rather) simple algorithmic
- high compute/memory intensity

Specificities

- Multiprecision arithmetic \Rightarrow lifting from finite precision (\mathbb{F}_p)
- ► Rank deficiency ⇒ unbalanced dynamic blocking
- ► Early adopter of subcubic matrix arithemtic ⇒ recursion C. Pernet: High Performance Mathematical Computing 11 2019-02-04

- 1. Algorithmic innovations:
 - 1.1 Rank deficient dense Gaussian elimination
 - 1.2 Quasiseparable matrices
 - 1.3 Outsourced computing security
- 2. Software releases and integration:
 - 2.1 LinBox ecosystem: LinBox, fflas-ffpack, givaro
 - 2.2 SageMath integration
- 3. Distributed Parallel linear algebra: rational solver
 - 3.1 Chinese remaindering based
 - 3.2 Dixon Lifting based

Rank deficient dense Gaussian elimination

[ISSAC'18] Symmetric triangular factorization

- First unconditional recursive algorithm
- Pivoting revealing the Rank Profile Matrix
- $O(n^2 r^{\omega-2})$ (= $1/3n^3$ with $\omega = 3, r = n$)
- Also hot topic in numerical linear algebra (LAPACK Working notes 294, Dec'17)

LAPACK vs FFPACK modulo 8388593

n	LAPACK (numerical) dsytrf (LDLT)	FFPACK (exact) fsytrf (LDLT)	LAI
5000	1.60s	2 R 6 1.59s	Q
10000	11.98s	10.90s	

Matrices with low off-diagonal rank

[ISSAC'16, JSC'18] New compact representation and algorithms

- Matches the best space complexities
- Reduction to matrix multiplication
- Breakthrough: flat representation (non hierarchical)

[ISSAC'16, JSC'18] New compact representation and algorithms

- Matches the best space complexities
- Reduction to matrix multiplication
- Breakthrough: flat representation (non hierarchical)

Follow-up: on-going work with numerical HPC colleagues:

- S. Chandrasekaran (UCSB)
- T. Mary (U. Manchester, Mumps)

LinBox ecosystem

- givaro: field/ring arithmetic
- fflas-ffpack: dense linear algebra over finite field
- LinBox: exact linear algebra
- Tightly integrated in SageMath

Software releases and integration	
*	
LinBox ecosystem	
givaro: field/ring arithmetic	4 releases
<pre>fflas-ffpack: dense linear algebra over finite field</pre>	6 releases
LinBox: exact linear algebra	6 releases
Tightly integrated in SageMath	13 tickets

Software releases and integration	
*	
LinBox ecosystem	
<pre>givaro: field/ring arithmetic fflas-ffpack: dense linear algebra over finite field LinBox: exact linear algebra</pre>	4 releases 6 releases 6 releases
Tightly integrated in SageMath	13 tickets
Featuring	

- Full functional implementations of new algorithmic contributions
- Improved vectorization and parallel routines
- Drastic improvement of reliability (continuous integration, test-suite coverage, randomized certificates, etc)

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

- 2 full time engineers
- Communication and serialization layer done
- Prototype MPI parallelization of Chinese remainder based solver.

C. Pernet: High Performance Mathematical Computing 17 2019-02-04

Distributed computing (on-going work)

D5.14: Distributed exact linear system solving

Work in progress:

- Major refactorization of LinBox solver code
- Hyrbid OpenMP-MPI implementation
 - Better memory usage,
 - yet still slower than full-MPI
- Hybrid combination of CRT+Dixon and parallelization.

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Contributions:

- Linear time certif. for LU, Det, Rank Profile Matrix [ISSAC'16,17]
- Error correction in LU decomp.

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Secure Multiparty Computation

- each player contribute with a share of the input
- shares must remain private

Contributions:

- Linear time certif. for LU, Det, Rank Profile Matrix [ISSAC'16,17]
- Error correction in LU decomp.

- SMC protocol for Strassen's MatMul ([D. Lucas' talk Wed. 6])
- SMC protocol for LUP, and LinSys

Exploratory aspects: security of outsourced computing

Trust and reliability over the Cloud

Outsourcing computations:

- trusted lightweight client computer
- untrusted powerful cloud server

Secure Multiparty Computation

- each player contribute with a share of the input
- shares must remain private

Contributions:

- Linear time certif. for LU, Det, Rank Profile Matrix [ISSAC'16,17]
- Error correction in LU decomp.

- SMC protocol for Strassen's MatMul ([D. Lucas' talk Wed. 6])
- SMC protocol for LUP, and LinSys

Angle: algorithm/application-based solutions ~> towards practicality

Conclusion

Outcome of WorkPackage 5

Review 1 Review 2 Final review T5.1 Pari/GP D5.16 T5.2 GAP D5.15 T5.3 LinBox D5.12 D5.14 T5.4 Singular D5.6, D5.7 D5.13 T5.5 MPIR D5.5, D5.7 T5.6 Combinatorics D5.1 D5.11 T5.7 Pythran D5.2 D5.11 T5.8 SunGrid Engine D5.3

Overall

20+ software relases

7 research papers

From dedicated to general purpose HPC components:

- Early instances of HPC computer algebra: dedicated to some target application (cryptanalysis, etc)
- Building a general purpose HPC component:
 - challenging
 - longer term sustainability
- Risk of technology dependency
 - Cilk: from success to shut-down
 - Interchangeability and modularity
- Security for outsourced computing
 - exploit algebraic properties of the problem
 well suited for computer algebra

