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Riemman-Roch Problem

K : perfect field of characteristic sufficiently large or zero.
C : irreducible projective curve described by Q ∈ K[X ,Y ], not necessarily
smooth.

Goal : find all functions
R(X ,Y )/S(X ,Y ) ∈ K(C ) =
Frac(K[X ,Y ]/(Q)) such that :
R(Z ) = 0
S may cancel at P1

S may cancel at P2

no poles at infinity

Prescribed zeroes, authorized poles
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Motivations

Riemann-Roch spaces are vector spaces useful in particular for :

Computing the group law of the Jacobian of a curve.
Volcheck (1994), Huang et Ierardi (1994), Khuri-Makdisi (1995).
Building algebraic geometric error-correcting codes.
Goppa (1983), Haché (1995).
Integration of algebraic functions. Davenport (1981).

3 / 26



State of the art

Here, C is a curve of degree d and genus g and D = D+ − D− is a
divisor on C (D+ and D− are effective divisors).

Computation of general Riemann-Roch spaces :

Huang and Ierardi (1994) : geometric algorithm in O(d6 deg(D+)
6).

Haché (1995).
Hess’s arithmetic algorithm (2002).

Computation of the group law in Jacobians (deg(D+) = O(g)) :

Volcheck (1994) : arithmetic algorithm in O(max(d , g)7).
Khuri-Makdisi (2007) : algorithm in O(gω+ε) where ω is a feasible
exponent for matrix multiplication and ε > 0.
Possible improvements for specific curves (for instance Õ(g) for
hyperelliptic curves, Cantor).
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Main results

Variant of the Brill-Noether algorithm : geometric probabilistic Las
Vegas algorithm for computing Riemann-Roch spaces in the case of
divisors not involving singular points. Mild assumptions when the
curve is singular.
Bound on the probability of failure :

O(max(deg(C )4, deg(D+)
2)/|E |)

where E is a finite subset of K in which we can pick elements at
random uniformly.
Proof of complexity :
Number of arithmetic operations in K bounded by :

O(max(deg(C )2, deg(D+))
ω)

where ω is a feasible exponent for matrix multiplication.
C++/NTL implementation of this algorithm.
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Plan

1 Algorithm

2 Representation of divisors

3 Complexity
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Input and output

Input :
A polynomial q ∈ K[X ,Y ] describing an irreducible projective plane
curve C .
The representations of two effective divisors D+ and D− both not
involving any singular point of C .

Output : A basis of the vector space L(D) where D = D+ − D−.

Remark
More on the representation of effective divisors later.
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Construction of a suitable denominator

Common denominator of degree d .

−→ Choice of a random polynomial h of degree d which vanishes with
the right multiplicities at all points prescribed by D+ : h is solution of an
underdetermined linear system.

−→ Computation of a representation for the effective divisor (h).

Remark

We build h such that its degree in Y is lesser than deg(C ).
The degree d is tuned to be as small as possible while guaranteeing
an underdetermined linear system. We have :

d <
deg(D+)

deg(C )
+ deg(C )
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Readjusting the zeroes

Non exact interpolation : h has non
desired zeroes.

−→ Find those non desired zeroes :
they are represented by (h)− D+.
−→ Add them to D−.

Counterbalance the unwanted zeros of
the denominator by the same zeros for
the numerators.

Remark

We assume (h) does not involve any singular point of C .
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Construction of the numerators

From last step : D ′ = D− + (h)− D+ imposes the zeros of numerators.

−→ Computation of a base B of polynomials of degree at most deg(h)
and vanishing at all points prescribed by D ′ with the right multiplicities :
again a linear system.

Correction

The set {b/h | b ∈ B} is a base of the Riemann-Roch space L(D).

Proof : Vect({b/h | b ∈ B}) ⊂ L(D) by construction. For the converse :
use a variant of Brill-Noether residue theorem.
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Sum up of the algorithm

Choose an interpolating polynomial h as denominator.
Compute the representation of (h).
Identify the unwanted zeros of h.
Find the new constraints on the zeroes of numerators.
Compute a base of numerators.
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Plan

1 Algorithm

2 Representation of divisors
Polynomial representation
Operations on divisors

3 Complexity
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Main idea

Remark
We only represent effective divisors D with no singular points.

The representation of D is :

Similar to Mumford Coordinates in the case of hyperelliptic curves,
Encodes the effective divisor by univariate polynomials (Giusti,
Lecerf, Salvy, 1999). In particular :
Finds a univariate polynomial χ such that K[C ]/(I ) ∼= K[S ]/χ(S)
where I is an ideal such that K[C ]/(I ) is the description of the
algebraic set corresponding to the support of D.
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Illustration of the representation

Potential problems :

Points of the divisor with the
same projection.
Tangents to the curve
perpendicular to the
direction of projection at
some divisor points.

Solution : Find a suitable direction
of projection.
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Primitive representation of effective divisors

An effective divisor D is represented by (λ, χ, u, v) ∈ K×K[S ]3 such
that :

1 The degree of χ is the degree of D and deg(u), deg(v) < deg(D).
2 q(u(S), v(S)) ≡ 0 mod χ(S).
3 λu(S) + v(S) = S .

4 GCD

(
∂q

∂X
(u(S), v(S))− λ ∂q

∂Y
(u(S), v(S)), χ(S)

)
= 1.
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Existence of the representation

Warning

Such a representation does not always exist !
BUT

It does exist if the field K is large enough.

Idea of the proof :

If K is large enough, there is a λ ∈ K such that λX + Y is a
primitive element of K[C ]/(m).
Build representations for each point P involved.
Lift those representations to encode multiplicities (Hensel’s lemma).
Use the CRT to find the final representation.
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Operations needed on representations

Our algorithm requires us to know how to :

Sum two representations.
Subtract two representations (knowing that the result will remain an
effective divisor).
Compute the representation of the divisor (h).

Remark
The first two operations first require the two input representations to
agree on a common λ. Need to change the primitive element (Giusti,
Lecerf, Salvy, 1999).
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Example : the subtraction

Input : Two representations (λ, χ1, u1, v1) and (λ, χ2, u2, v2) of effective
divisors D1 and D2.

Output : The representation of D1 − D2 if this divisor remains effective.

Algorithm :
Suppress the common factors of χ1 and χ2 by computing
χ = χ1/GCD(χ1, χ2)

Reduce u1 and v1 modulo χ.
Return (λ, χ, u, v).

Main idea

With this representation, operations on divisors are operations
on polynomials !
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Translation of the operations needed

Choose polynomial h as denominator : build + solve linear system.
Compute the representation of (h) : resultant and subresultant.
Identify the unwanted zeros of h : GCD.
Find the new constraints on the zeroes of numerators : CRT.
Compute a base of numerators : build + solve linear system.

Remark
The cost of linear algebra dominates the costs of the others steps.
Confirmed in practice.
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Final complexity and comparisons

Final complexity

Our algorithm requires at most

O(max(deg(C )2, deg(D+))
ω)

arithmetic operations in K.

Improves the complexity in O(deg(C )6 deg(D+)
6) of the geometric

algorithm of Huang and Ierardi.
When deg(D+) ≤ deg(C )2, complexity in O(deg(C )2ω). Slightly
improves Khuri-Makdisi in the special case of computing in
Jacobians of smooth plane curves.
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Experimental results

Comparison of the C++/NTL implementation rrspace and the
Magma implementation RiemannRochSpace.
Experiments done with K = GF(65521).

Time needed to compute the Riemann-Roch space of an effective divisor
of increasing degree on a curve of degree 10.
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Experimental results

Logarithmic scales.
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Experimental results

Comparison of the C++/NTL implementation rrspace and the
Magma implementation RiemannRochSpace.
Experiments done with K = GF(65521).

Time needed to compute the sum of two elements of the Jacobian of a
curve of increasing degree.

24 / 26



Experimental results

Logarithmic scales.
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Future works

Structure of the linear systems ?
What happens when we cannot avoid singularities ?
→ Local desingularisation (Haché, 1995).

Code available : https ://gitlab.inria.fr/pspaenle/rrspace
ArXiv link : https ://arxiv.org/abs/1811.08237

Thank you !
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