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Riemman-Roch Problem

K : perfect field of characteristic sufficiently large or zero.

C :irreducible projective curve described by @ € K[X, Y], not necessarily
smooth.
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Riemman-Roch Problem

K : perfect field of characteristic sufficiently large or zero.

C :irreducible projective curve described by @ € K[X, Y], not necessarily
smooth.

Goal : find all functions

R(X,Y)/S(X,Y) € K(C) =

Frac(K[X, Y]/(Q)) such that :
R(Z)=0

zZ P

S may cancel at P;

Yy
&/ - S may cancel at P>

no poles at infinity
P

Prescribed zeroes, authorized poles
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Riemann-Roch spaces are vector spaces useful in particular for :

o Computing the group law of the Jacobian of a curve.
Volcheck (1994), Huang et lerardi (1994), Khuri-Makdisi (1995).

@ Building algebraic geometric error-correcting codes.
Goppa (1983), Haché (1995).

o Integration of algebraic functions. Davenport (1981).
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State of the art

Here, C is a curve of degree d and genus g and D =D, — D_is a
divisor on C (D, and D_ are effective divisors).

Computation of general Riemann-Roch spaces :

o Huang and lerardi (1994) : geometric algorithm in O(d® deg(D; )°).
@ Haché (1995).
@ Hess's arithmetic algorithm (2002).

Computation of the group law in Jacobians (deg(Dy) = O(g)) :
o Volcheck (1994) : arithmetic algorithm in O(max(d,g)”).

o Khuri-Makdisi (2007) : algorithm in O(g“ ") where w is a feasible
exponent for matrix multiplication and ¢ > 0.

o Possible improvements for specific curves (for instance O(g) for
hyperelliptic curves, Cantor).
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Main results

@ Variant of the Brill-Noether algorithm : geometric probabilistic Las
Vegas algorithm for computing Riemann-Roch spaces in the case of
divisors not involving singular points. Mild assumptions when the
curve is singular.

@ Bound on the probability of failure :
O(max(deg(C)*, deg(D;)?)/|E])

where E is a finite subset of K in which we can pick elements at
random uniformly.

@ Proof of complexity :
Number of arithmetic operations in K bounded by :

O(max(deg(C)?, deg(D+))*)

where w is a feasible exponent for matrix multiplication.
@ C++/NTL implementation of this algorithm.
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o Algorithm
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Input and output

Input :

e A polynomial g € K[X, Y] describing an irreducible projective plane
curve C.

@ The representations of two effective divisors D, and D_ both not
involving any singular point of C.

Output : A basis of the vector space L(D) where D =D, — D_.

More on the representation of effective divisors later.
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Construction of a suitable denominator

Common denominator of degree d.

— Choice of a random polynomial h of degree d which vanishes with
the right multiplicities at all points prescribed by D, : h is solution of an
underdetermined linear system.

— Computation of a representation for the effective divisor (h).

Remark
@ We build h such that its degree in Y is lesser than deg(C).

@ The degree d is tuned to be as small as possible while guaranteeing
an underdetermined linear system. We have :

d< djegg((l?)) + deg(C)
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Readjusting the zeroes

Non exact interpolation : h has non
desired zeroes.

— Find those non desired zeroes :
they are represented by (h) — D,.

— Add them to D_.

Counterbalance the unwanted zeros of
the denominator by the same zeros for
the numerators.

We assume (h) does not involve any singular point of C.
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Construction of the numerators

From last step : D’ = D_ + (h) — D, imposes the zeros of numerators.

— Computation of a base B of polynomials of degree at most deg(h)
and vanishing at all points prescribed by D’ with the right multiplicities :
again a linear system.

The set {b/h | b € B} is a base of the Riemann-Roch space L(D).

Proof : Vect({b/h | b € B}) C L(D) by construction. For the converse :
use a variant of Brill-Noether residue theorem.
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Sum up of the algorithm

Choose an interpolating polynomial h as denominator.
Compute the representation of (h).
Identify the unwanted zeros of h.

Find the new constraints on the zeroes of numerators.

e 6 66 o o

Compute a base of numerators.
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e Representation of divisors
@ Polynomial representation
@ Operations on divisors
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We only represent effective divisors D with no singular points.

The representation of D is :

@ Similar to Mumford Coordinates in the case of hyperelliptic curves,
@ Encodes the effective divisor by univariate polynomials (Giusti,
Lecerf, Salvy, 1999). In particular :

e Finds a univariate polynomial x such that K[C]/(/) = K[S]/x(S)
where [ is an ideal such that K[C]/(/) is the description of the
algebraic set corresponding to the support of D.
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[llustration of the representation

Potential problems :

@ Points of the divisor with the
same projection.

[ {

Y

e Tangents to the curve
perpendicular to the
direction of projection at
some divisor points.

LS R ——

Solution : Find a suitable direction
of projection.
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Primitive representation of effective divisors

An effective divisor D is represented by (), x, u, v) € K x K[S]? such
that :

© The degree of x is the degree of D and deg(u),deg(v) < deg(D).
q(u($), v(S)) = 0 mod x(5).
Q@ Mu(S)+v(S)=S.

Q@ GCD (g;( (S),v(S)) — Ag—;’,(u(S), v(S))7x(5)> =1

15 /26



Existence of the representation

Such a representation does not always exist !
BUT
It does exist if the field K is large enough.

Idea of the proof :

o If K is large enough, there is a A\ € K such that AX 4+ Y is a
primitive element of K[C]/(m).

@ Build representations for each point P involved.

o Lift those representations to encode multiplicities (Hensel's lemma).

@ Use the CRT to find the final representation.
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Operations needed on representations

Our algorithm requires us to know how to :

@ Sum two representations.

@ Subtract two representations (knowing that the result will remain an
effective divisor).

e Compute the representation of the divisor (h).

The first two operations first require the two input representations to
agree on a common \. Need to change the primitive element (Giusti,
Lecerf, Salvy, 1999).
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Example : the subtraction

Input : Two representations (A, x1, u1, va) and (A, x2, Uz, v2) of effective
divisors D; and Ds.

Output : The representation of D; — D, if this divisor remains effective.

Algorithm :

@ Suppress the common factors of y; and x» by computing
X = x1/GCD(x1, X2)
@ Reduce v; and v; modulo .

@ Return (X, x, u, v).

Main idea

With this representation, operations on divisors are operations
on polynomials!
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© Complexity

19/26



Translation of the operations needed

Choose polynomial h as denominator : build + solve linear system.
Compute the representation of (h) : resultant and subresultant.
Identify the unwanted zeros of h : GCD.

Find the new constraints on the zeroes of numerators : CRT.

Compute a base of numerators : build + solve linear system.

The cost of linear algebra dominates the costs of the others steps.
Confirmed in practice.
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Final complexity and comparisons

Final complexity

Our algorithm requires at most
O(max(deg(C)?, deg(D4))*)

arithmetic operations in K.

o Improves the complexity in O(deg(C)® deg(D,)®) of the geometric
algorithm of Huang and lerardi.

o When deg(D.) < deg(C)?, complexity in O(deg(C)**). Slightly
improves Khuri-Makdisi in the special case of computing in
Jacobians of smooth plane curves.
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Experimental results

@ Comparison of the C++/NTL implementation rrspace and the
Magma implementation RiemannRochSpace.
e Experiments done with K = GF(65521).

Time needed to compute the Riemann-Roch space of an effective divisor
of increasing degree on a curve of degree 10.

Timings
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100 200 300 400 500 600 700 800 900 1000

22/26



Experimental results

Logarithmic scales.

Timings
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Experimental results

@ Comparison of the C++/NTL implementation rrspace and the
Magma implementation RiemannRochSpace.
e Experiments done with K = GF(65521).
Time needed to compute the sum of two elements of the Jacobian of a
curve of increasing degree.

Timings

Magma —e—
80 NTL —m—
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Experimental results

Logarithmic scales.

Timings

64
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0.015625
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@ Structure of the linear systems?

@ What happens when we cannot avoid singularities ?
— Local desingularisation (Haché, 1995).

Code available : https ://gitlab.inria.fr/pspaenle/rrspace
ArXiv link : https ://arxiv.org/abs/1811.08237
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@ Structure of the linear systems?

@ What happens when we cannot avoid singularities ?
— Local desingularisation (Haché, 1995).

Code available : https ://gitlab.inria.fr/pspaenle/rrspace
ArXiv link : https ://arxiv.org/abs/1811.08237

Thank you!
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