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Introduction

Let (A, B) be the ideal generated by A and B (A, B € K[X, Y]).

e Given P € K[X, Y], check if P € (A, B).
(ideal membership test)

o Compute a normal form of P € K[X, Y]/(A, B).
(computation in the quotient algebra)
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Let (A, B) be the ideal generated by A and B (A, B € K[X, Y]).

e Given P € K[X, Y], check if P € (A, B).
(ideal membership test)

o Compute a normal form of P € K[X, Y]/(A, B).
(computation in the quotient algebra)

Classical solution using Grobner bases.
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Introduction

e Fast Grobner basis algorithms rely on linear algebra (ex: F4,
F5...)
@ Can we do it with polynomial arithmetic?
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e Fast Grobner basis algorithms rely on linear algebra (ex: F4,
F5...)
@ Can we do it with polynomial arithmetic?

o Given a Grobner basis G, can we reduce P modulo G faster?
o Are these ideas useful to compute G faster?

Setting and notations
e | = (A, B) with generic A, B € K[X, Y] given in total degree.

@ Use the degree lexicographic order to compute G.

@ deg A= n and deg B = m with n < m (in this talk n = m)
@ We want to reduce P with degP = d
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Introduction

e Fast Grobner basis algorithms rely on linear algebra (ex: F4,
F5...)
@ Can we do it with polynomial arithmetic?

o Given a Grobner basis G, can we reduce P modulo G faster?
o Are these ideas useful to compute G faster?

Setting and notations
e | = (A, B) with generic A, B € K[X, Y] given in total degree.

@ Use the degree lexicographic order to compute G.

@ deg A= n and deg B = m with n < m (in this talk n = m)
@ We want to reduce P with degP = d

In this specific setting, a quasi-optimal algorithm exists !
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@ Presentation of the problem
@ Polynomial reduction: complexity
@ Grobner bases: concise representation

@ Faster computation
@ Polynomial reduction
@ Grobner basis
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Presentation of the problem Polynomial reduction: complexity
Grobner bases: concise representation

Polynomial reduction: complexity

~<
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o A, B: ©(n?) coefficients

e K[X, Y]/I: dimension ©(n?)

o G: ©(n?) coefficients (©(n?) for each G;)
Reduction using G needs at least ©(n3) = reduction with less
information?
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Presentation of the problem Polynomial reduction: complexity
Grobner bases: concise representation

Related results

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time with respect to the size of the equation

PIZQ,G,—l-R
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Related results

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time with respect to the size of the equation

PIZQ,G,—l-R

e But this equation has size ©(n%) and we would like to achieve
O(n?) complexity. . .
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Related results

Theorem (van der Hoeven — ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time with respect to the size of the equation

PIZQ,G,—l-R

e But this equation has size ©(n%) and we would like to achieve
O(n?) complexity. . .
@ —> Somehow reduce the size of the equation.
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Presentation of the problem Polynomial reduction: complexity
Grobner bases: concise representation

Related results

Theorem (van der Hoeven, L. — ISSAC 2018)

A special class of bases called vanilla Grobner bases admit a terse
representation in O(n?) space. Assuming this representation has
been precomputed, reduction can be done in time O(n?).
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Presentation of the problem Polynomial reduction: complexity
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Related results

Theorem (van der Hoeven, L. — ISSAC 2018)

A special class of bases called vanilla Grobner bases admit a terse
representation in O(n?) space. Assuming this representation has
been precomputed, reduction can be done in time O(n?).

@ Problem: in this setting, G is not vanilla.
(vanilla Grobner bases rely on different assumptions)
@ But ...similar ideas still apply.

(We use essentially the same tricks, although the algorithm is
very different).
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Presentation of the problem Polynomial reduction: complexity
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Grobner bases: concise representation — 1

The Grobner basis is generated by A and B = there are
relations between the G; (redundant information)
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The Grobner basis is generated by A and B = there are
relations between the G; (redundant information)

@ Reduced Grobner basis:

red red red red red
G/$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9
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Grobner bases: concise representation — 1

The Grobner basis is generated by A and B = there are
relations between the G; (redundant information)

@ Reduced Grobner basis:

red red red red red
G/$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a

Grobner basis.
Git1 G
= M;
( Git2 > ( Git1 >
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Grobner bases: concise representation — 1

The Grobner basis is generated by A and B = there are
relations between the G; (redundant information)

@ Reduced Grobner basis:

red red red red red
G/$5 = Spol(G[*¢, G[$9) rem G*, ..., G[$9

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a
Grobner basis.

Giyk > ( G; >
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< Giyki1 K\ Gi

Go = A, G1 = B and well-chosen M; , hold all information
about G.
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Presentation of the problem Polynomial reduction: complexity
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Grobner bases: concise representation — 1

The Grobner basis is generated by A and B = there are
relations between the G; (redundant information)

@ Reduced Grébner basis:
Gir_‘i% = Spol(G,'ed, G,'_T_dl) rem G(ged, A G,-r_idl

@ Remark: Gjip = Spol(G;, Gj;+1) rem G;, Gj11 also gives a
Grobner basis.

Gitk > ( G; >
< Gitk+1 N\ Gia

Go = A, G1 = B and well-chosen M; , hold all information
about G. Also, little information is required to compute the M; .
= (univariate) GCD computation on the main diagonals of A, B.
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Presentation of the problem Polynomial reduction: complexity
Grobner bases: concise representation

Grobner bases: concise representation — 2

The coefficients of each G; are needed to compute the reduction,
but there are too many.

@ Keep only enough coefficients to evaluate Q;

@ Then, rewrite G; = (G, Gx11) to evaluate the remainder.
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Grobner bases: concise representation — 2

The coefficients of each G; are needed to compute the reduction,
but there are too many.

@ Keep only enough coefficients to evaluate Q;

@ Then, rewrite G; = (G, Gx11) to evaluate the remainder.
= Control the degree of the quotients.

Dichotomic selection strategy
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n/2" quotients of degree
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Grobner bases: concise representation — Example

+ the matrix My g
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Faster computation

Outline

@ Faster computation
@ Polynomial reduction
@ Grobner basis

Joris van der Hoeven and Robin Larrieu

Polynomial reduction
Grobner basis
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Polynomial reduction
Faster computation Grobner basis

Polynomial reduction — Overview

Reminder
Equation P =37, Q:G; + R is too large: ©(n?) instead of O(n?)

Adapt the algorithm to take advantage of the concise
representation:
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size of the equation.
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Polynomial reduction
Faster computation Grobner basis

Polynomial reduction — Overview

Reminder
Equation P =37, Q:G; + R is too large: ©(n?) instead of O(n?)

Adapt the algorithm to take advantage of the concise
representation:

@ Use the truncated elements Gl-# instead of G; to reduce the
size of the equation.

@ The precision of G,-# is chosen (by definition) sufficient to
compute Q;.

@ Once Q; is known, replace Q;G; by Sk Gy + Sk11Gk11 to
increase precision.
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Polynomial reduction — Example

Q10G10, = S8Gs + 59%&
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Polynomial reduction — Example

(Qo+ So)Go = SyGo+ 51
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Polynomial reduction
Faster computation Grobner basis

Grobner basis

o Compute the concise representation: O(n?).

o Let t; ;= Xmx(02—Dyn—=i — ¢(G;).

° I'\ieduce t; modulo G and let R; be the remainder:
O(n?) for each element = O(n?).

@ Set Gl_red =t — R;.
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Polynomial reduction
Faster computation Grobner basis

Grobner basis

o Compute the concise representation: O(n?).
o Let t; := Xm>(02-Dyn=i — |t(G).

° I'\ieduce t; modulo G and let R,-ﬂbe the remainder:
O(n?) for each element = O(n?).

@ Set Gl_red =t — R;.

= This is quasi-optimal since G has size ©(n?).
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Conclusion

In a generic bivariate setting, there are quasi-optimal algorithms for
polynomial reduction (in terms of the size of A, B, P) and to
compute the reduced Grébner basis (in terms of the output size)

v
In other words

@ Structure of K[X, Y]/(A, B) with quasi-optimal complexity.
o Quasi-optimal ideal membership test P €7 (A, B).
@ Quasi-optimal multiplication in K[X, Y]/(A, B).
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Conclusion

In a generic bivariate setting, there are quasi-optimal algorithms for
polynomial reduction (in terms of the size of A, B, P) and to
compute the reduced Grébner basis (in terms of the output size)

v
In other words

@ Structure of K[X, Y]/(A, B) with quasi-optimal complexity.
o Quasi-optimal ideal membership test P €7 (A, B).
@ Quasi-optimal multiplication in K[X, Y]/(A, B).

Generalization:
@ Slightly degenerate cases ? — seems feasible.

@ More than 2 variables 7 — much more difficult.
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Conclusion

Proof-of-concept implementation (in Sage) at
https://www.lix.polytechnique.fr/~larrieu/

@ Mainly intended as correctness proof.

e Missing (fast) implementation of some primitives —>
reduction is not competitive in practice.

e Computing the concise representation is faster than Sage's
builtin Grobner basis library for n > 160.
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Conclusion

Proof-of-concept implementation (in Sage) at
https://www.lix.polytechnique.fr/~larrieu/

@ Mainly intended as correctness proof.

e Missing (fast) implementation of some primitives —>
reduction is not competitive in practice.

e Computing the concise representation is faster than Sage's
builtin Grobner basis library for n > 160.

Thank you for your attention
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