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Introduction

Let 〈A,B〉 be the ideal generated by A and B (A,B ∈ K[X ,Y ]).

Given P ∈ K[X ,Y ], check if P ∈ 〈A,B〉.
(ideal membership test)

Compute a normal form of P̄ ∈ K[X ,Y ]/〈A,B〉.
(computation in the quotient algebra)

Classical solution using Gröbner bases.
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Introduction

Fast Gröbner basis algorithms rely on linear algebra (ex: F4,
F5. . . )

Can we do it with polynomial arithmetic?

Given a Gröbner basis G , can we reduce P modulo G faster?
Are these ideas useful to compute G faster?

Setting and notations

I = 〈A,B〉 with generic A,B ∈ K[X ,Y ] given in total degree.

Use the degree lexicographic order to compute G .

degA = n and degB = m with n 6 m (in this talk n = m)

We want to reduce P with degP = d

Main result

In this specific setting, a quasi-optimal algorithm exists !
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Outline

1 Presentation of the problem
Polynomial reduction: complexity
Gröbner bases: concise representation

2 Faster computation
Polynomial reduction
Gröbner basis
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Gröbner bases: concise representation

2 Faster computation

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 5 / 17



Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Polynomial reduction: complexity

Y

X

A,B: Θ(n2) coefficients

K[X ,Y ]/I : dimension Θ(n2)

G : Θ(n3) coefficients (Θ(n2) for each Gi )

Reduction using G needs at least Θ(n3) =⇒ reduction with less
information?
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Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Related results

Theorem (van der Hoeven – ACA 2015)

The extended reduction of P modulo G can be computed in
quasi-linear time with respect to the size of the equation

P =
∑
i

QiGi + R

But this equation has size Θ(n3) and we would like to achieve
Õ(n2) complexity. . .

=⇒ Somehow reduce the size of the equation.
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Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Related results

Theorem (van der Hoeven, L. – ISSAC 2018)

A special class of bases called vanilla Gröbner bases admit a terse
representation in Õ(n2) space. Assuming this representation has
been precomputed, reduction can be done in time Õ(n2).

Problem: in this setting, G is not vanilla.
(vanilla Gröbner bases rely on different assumptions)

But . . . similar ideas still apply.
(We use essentially the same tricks, although the algorithm is
very different).
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Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Gröbner bases: concise representation – 1

The Gröbner basis is generated by A and B =⇒ there are
relations between the Gi (redundant information)

Reduced Gröbner basis:
G red
i+2 = Spol(G red

i ,G red
i+1) rem G red

0 , . . . ,G red
i+1

Remark: Gi+2 = Spol(Gi ,Gi+1) rem Gi ,Gi+1 also gives a
Gröbner basis.

(
G
G

)
= M

(
Gi

Gi+1

)
G0
∼= A, G1

∼= B and well-chosen Mi ,k hold all information
about G . Also, little information is required to compute the Mi ,k .
∼= (univariate) GCD computation on the main diagonals of A,B.
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Gröbner basis.

(
Gi+1

Gi+2

)
= Mi

(
Gi

Gi+1

)

G0
∼= A, G1

∼= B and well-chosen Mi ,k hold all information
about G . Also, little information is required to compute the Mi ,k .
∼= (univariate) GCD computation on the main diagonals of A,B.

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 9 / 17



Presentation of the problem
Faster computation

Polynomial reduction: complexity
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Gröbner bases: concise representation – 1

The Gröbner basis is generated by A and B =⇒ there are
relations between the Gi (redundant information)

Reduced Gröbner basis:
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Gröbner basis.

(
Gi+k

Gi+k+1

)
= Mi ,k

(
Gi

Gi+1

)
G0
∼= A, G1

∼= B and well-chosen Mi ,k hold all information
about G .

Also, little information is required to compute the Mi ,k .
∼= (univariate) GCD computation on the main diagonals of A,B.

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 9 / 17



Presentation of the problem
Faster computation

Polynomial reduction: complexity
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Gröbner basis.

(
Gi+k

Gi+k+1

)
= Mi ,k

(
Gi

Gi+1

)
G0
∼= A, G1

∼= B and well-chosen Mi ,k hold all information
about G . Also, little information is required to compute the Mi ,k .
∼= (univariate) GCD computation on the main diagonals of A,B.

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 9 / 17



Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Gröbner bases: concise representation – 2

The coefficients of each Gi are needed to compute the reduction,
but there are too many.

Keep only enough coefficients to evaluate Qi

Then, rewrite Gi = f (Gk ,Gk+1) to evaluate the remainder.

=⇒ Control the degree of the quotients.

Dichotomic selection strategy

n/2 quotients of degree 1

n/4 quotients of degree 4

n/8 quotients of degree 10

. . .

n/2i quotients of degree
3× 2i−1 − 2
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Gröbner bases: concise representation – 2

The coefficients of each Gi are needed to compute the reduction,
but there are too many.

Keep only enough coefficients to evaluate Qi

Then, rewrite Gi = f (Gk ,Gk+1) to evaluate the remainder.

=⇒ Control the degree of the quotients.

Dichotomic selection strategy

n/2 quotients of degree 1

n/4 quotients of degree 4

n/8 quotients of degree 10

. . .

n/2i quotients of degree
3× 2i−1 − 2

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 10 / 17



Presentation of the problem
Faster computation

Polynomial reduction: complexity
Gröbner bases: concise representation

Gröbner bases: concise representation – Example

G red
0 G red

1 G red
2 G red

3

G red
4 G red

5 G red
6 G red

7

G red
8 G red

9 G red
10 G red

11

G0 G1 G2 G3

G4 G5 G6 G7

G8 G9 G10 G11

G#
0 G#

1 G#
2 G#

3

G#
4 G#

5 G#
6 G#

7

G#
8 G#

9 G#
10 G#

11

+ the matrix M0,2

+ the matrix M0,4 + the matrix M4,2

+ the matrix M0,8 + the matrix M8,2
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Gröbner bases: concise representation
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Presentation of the problem
Faster computation

Polynomial reduction
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Presentation of the problem
Faster computation

Polynomial reduction
Gröbner basis

Polynomial reduction – Overview

Reminder

Equation P =
∑

i QiGi + R is too large: Θ(n3) instead of Õ(n2)

Adapt the algorithm to take advantage of the concise
representation:

Use the truncated elements G#
i instead of Gi to reduce the

size of the equation.

The precision of G#
i is chosen (by definition) sufficient to

compute Qi .

Once Qi is known, replace QiGi by SkGk + Sk+1Gk+1 to
increase precision.
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Gröbner basis

Polynomial reduction – Overview

Reminder

Equation P =
∑

i QiGi + R is too large: Θ(n3) instead of Õ(n2)
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Presentation of the problem
Faster computation

Polynomial reduction
Gröbner basis

Polynomial reduction – Example

Q10G10 = S8G8 + S9G9
(Q9 + S9)G9 = S0G0 + S1G1
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Gröbner basis

Polynomial reduction – Example

Q10G10 = S8G8 + S9G9
(Q9 + S9)G9 = S0G0 + S1G1

Joris van der Hoeven and Robin Larrieu Generic bivariate ideals 14 / 17



Presentation of the problem
Faster computation

Polynomial reduction
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Presentation of the problem
Faster computation

Polynomial reduction
Gröbner basis

Gröbner basis

Compute the concise representation: Õ(n2).

Let ti := Xmax(0,2i−1)Y n−i = lt(Gi ).

Reduce ti modulo G and let Ri be the remainder:
Õ(n2) for each element =⇒ Õ(n3).

Set G red
i := ti − Ri .

⇒ This is quasi-optimal since G has size Θ(n3).
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Conclusion

Main result

In a generic bivariate setting, there are quasi-optimal algorithms for
polynomial reduction (in terms of the size of A,B,P) and to
compute the reduced Gröbner basis (in terms of the output size)

In other words

Structure of K[X ,Y ]/〈A,B〉 with quasi-optimal complexity.

Quasi-optimal ideal membership test P ∈? 〈A,B〉.
Quasi-optimal multiplication in K[X ,Y ]/〈A,B〉.

Generalization:

Slightly degenerate cases ?

→ seems feasible.

More than 2 variables ?

→ much more difficult.
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Conclusion

Proof-of-concept implementation (in Sage) at
https://www.lix.polytechnique.fr/~larrieu/

Mainly intended as correctness proof.

Missing (fast) implementation of some primitives =⇒
reduction is not competitive in practice.

Computing the concise representation is faster than Sage’s
builtin Gröbner basis library for n > 160.

Thank you for your attention
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