The lexicographic degree of two-bridge knots

E. Brugallé, P. -V. Koseleff, D. Pecker

Sorbonne Université (UPMC - Paris 6), IMJ (UMR CNRS 7586), Ouragan (Inria)

JNCF 2019

The lexicographic degree of two-bridge knots

E. Brugallé, P. -V. Koseleff, D. Pecker

Sorbonne Université (UPMC - Paris 6), IMJ (UMR CNRS 7586), Ouragan (Inria)

JNCF 2019

Every knot $K \subset S^3$ can be represented as the closure of the image of a polynomial embedding $\mathbf{R} \to \mathbf{R}^3 \subset S^3$, see Vassiliev, 80's.

Every knot $K \subset S^3$ can be represented as the closure of the image of a polynomial embedding $\mathbf{R} \to \mathbf{R}^3 \subset S^3$, see Vassiliev, 80's.

Definition

The *multidegree* of a polynomial map $\gamma : \mathbf{R} \to \mathbf{R}^n$, $t \mapsto (P_i(t))$ is the *n*-tuple $(\deg(P_i))$. The *lexicographic degree* of a knot *K* is the minimal multidegree, for the lexicographic order, of a polynomial knot whose closure in \mathbf{S}^3 is isotopic to *K*.

Every knot $K \subset S^3$ can be represented as the closure of the image of a polynomial embedding $\mathbf{R} \to \mathbf{R}^3 \subset S^3$, see Vassiliev, 80's.

Definition

The *multidegree* of a polynomial map $\gamma : \mathbf{R} \to \mathbf{R}^n$, $t \mapsto (P_i(t))$ is the *n*-tuple $(\deg(P_i))$. The *lexicographic degree* of a knot *K* is the minimal multidegree, for the lexicographic order, of a polynomial knot whose closure in \mathbf{S}^3 is isotopic to *K*.

Aim

Determine the lexicographic degree of a knot K.

Every knot $K \subset S^3$ can be represented as the closure of the image of a polynomial embedding $\mathbf{R} \to \mathbf{R}^3 \subset S^3$, see Vassiliev, 80's.

Definition

The *multidegree* of a polynomial map $\gamma : \mathbf{R} \to \mathbf{R}^n$, $t \mapsto (P_i(t))$ is the *n*-tuple $(\deg(P_i))$. The *lexicographic degree* of a knot *K* is the minimal multidegree, for the lexicographic order, of a polynomial knot whose closure in \mathbf{S}^3 is isotopic to *K*.

Aim

Determine the lexicographic degree of a knot K.

Keywords

Polynomial knots, plane curves, trigonal curves, continued fractions, real pseudoholomorphic curves, knot diagrams, braids

Knots $\mathrm{H}(5,6,7)$ and $\mathrm{H}(4,5,7)$ are isotopic to the twist knot $\bar{5}_2$

Knots H(5, 6, 7) and H(4, 5, 7) are isotopic to the twist knot $\overline{5}_2$

2-bridge knots admit trigonal diagrams

A two-bridge knot admits a diagram in *Conway's open form* (or trigonal form). This diagram, denoted by $D(m_1, m_2, \ldots, m_k)$ where $m_i \in \mathbf{Z}$

Schubert fraction

The two-bridge links are classified by their Schubert fractions

$$\frac{\alpha}{\beta}=m_1+\frac{1}{m_2+\frac{1}{\cdots+\frac{1}{m_k}}}=[m_1,\ldots,m_k], \quad \alpha\geq 0, \ (\alpha,\beta)=1.$$

 $D(m_1, m_2, ..., m_k)$ and $D(m'_1, m'_2, ..., m'_l)$ correspond to isotopic links if and only if $\alpha = \alpha'$ and $\beta' \equiv \beta^{\pm 1} \pmod{\alpha}$.

Schubert fraction

The two-bridge links are classified by their Schubert fractions

$$\frac{\alpha}{\beta}=m_1+\frac{1}{m_2+\frac{1}{\cdots+\frac{1}{m_k}}}=[m_1,\ldots,m_k], \quad \alpha\geq 0, \ (\alpha,\beta)=1.$$

 $D(m_1, m_2, ..., m_k)$ and $D(m'_1, m'_2, ..., m'_l)$ correspond to isotopic links if and only if $\alpha = \alpha'$ and $\beta' \equiv \beta^{\pm 1} \pmod{\alpha}$.

Definition

Let C(u, m, -n, -v) be a trigonal diagram, where m, n are integers, and u, v are (possibly empty) sequences of integers. The Lagrange isotopy twists the right part of the diagram.

$$C(u, m, -n, -v) \mapsto C(u, m - \varepsilon, \varepsilon, n - \varepsilon, v), \ \varepsilon = \pm 1, \tag{1}$$

Schubert fraction

The two-bridge links are classified by their Schubert fractions

$$\frac{\alpha}{\beta}=m_1+\frac{1}{m_2+\frac{1}{\cdots+\frac{1}{m_k}}}=[m_1,\ldots,m_k], \quad \alpha\geq 0, \ (\alpha,\beta)=1.$$

 $D(m_1, m_2, ..., m_k)$ and $D(m'_1, m'_2, ..., m'_l)$ correspond to isotopic links if and only if $\alpha = \alpha'$ and $\beta' \equiv \beta^{\pm 1} \pmod{\alpha}$.

Definition

Let C(u, m, -n, -v) be a trigonal diagram, where m, n are integers, and u, v are (possibly empty) sequences of integers. The Lagrange isotopy twists the right part of the diagram.

$$C(u, m, -n, -v) \mapsto C(u, m - \varepsilon, \varepsilon, n - \varepsilon, v), \ \varepsilon = \pm 1, \tag{1}$$

Consequence

Every 2-bridge knot *K* admits has an alternating diagram of the form $D(m_1, m_2, ..., m_k)$, where m_i are all positive or all negative. $[u, m, -n, -v] = [u, m - \varepsilon, \varepsilon, n - \varepsilon, v]$

Crossing number

The crossing number N of K is the minimum number of crossings among all diagrams corresponding to isotopic knots.

Crossing number

The crossing number N of K is the minimum number of crossings among all diagrams corresponding to isotopic knots.

Lower bound (BKP, 2016)

The lexicographic degree of K is more than (3, N + 1, 2N - 1). The number of crossings of a plane curve of degree (3, b) is less than b - 1.

Crossing number

The crossing number N of K is the minimum number of crossings among all diagrams corresponding to isotopic knots.

Lower bound (BKP, 2016)

The lexicographic degree of K is more than (3, N + 1, 2N - 1). The number of crossings of a plane curve of degree (3, b) is less than b - 1.

Upper bound (KP, 2011)

The lexicographic degree of K is less than (3, b, c), where 3 < b < c and b + c = 3N. There exists a Chebyshev diagram (T_3, T_b, C) with $b + \deg C \le 3N$. Based on continued fraction expansion $[\pm 1, \ldots, \pm 1]$

Crossing number

The crossing number N of K is the minimum number of crossings among all diagrams corresponding to isotopic knots.

Lower bound (BKP, 2016)

The lexicographic degree of K is more than (3, N + 1, 2N - 1). The number of crossings of a plane curve of degree (3, b) is less than b - 1.

Upper bound (KP, 2011)

The lexicographic degree of K is less than (3, b, c), where 3 < b < c and b + c = 3N. There exists a Chebyshev diagram (T_3, T_b, C) with $b + \deg C \le 3N$. Based on continued fraction expansion $[\pm 1, \ldots, \pm 1]$

Theorem

Let $\gamma : \mathbf{R} \to \mathbf{R}^3$ be a polynomial parametrization of degree (3, b, c) of a knot of crossing number *N*. Then we have

$$b+c \geq 3N$$
.

Furthermore, if $N \le 11$, then the lexicographic degree of K satisfies b + c = 3N.

Sketch of Proof $b + c \ge 3N$

The plane curve *C* parametrized by C(t) = (x(t), y(t)) has b - 1 nodes in \mathbb{C}^2 . Let $N_0 = \sum_{i=1}^k |m_i|$ be the number of *real crossings* of *C*, and let $\delta = b - 1 - N_0$ be the number of other nodes – solitary nodes $\in \mathbb{R}^2$, pairs of complex conjugated nodes in $\mathbb{C}^2 \setminus \mathbb{R}^2$ – of *C*.

Let D(x) be the real monic polynomial of degree $\sigma + \delta$, whose roots are the abscissae of the σ special crossings (in which the sign in the Conway sequence changes) and the abscissae of the δ nodes that are not crossings. A careful study of the sign alternations shows that

$$2b - 3 \le \deg z(t)D(x(t)) = c + 3(\delta + \sigma) \le c + 3(b - N - 1)$$

which is the announced result.

Sketch of Proof $b + c \ge 3N$

The plane curve *C* parametrized by C(t) = (x(t), y(t)) has b - 1 nodes in \mathbb{C}^2 . Let $N_0 = \sum_{i=1}^k |m_i|$ be the number of *real crossings* of *C*, and let $\delta = b - 1 - N_0$ be the number of other nodes – solitary nodes $\in \mathbb{R}^2$, pairs of complex conjugated nodes in $\mathbb{C}^2 \setminus \mathbb{R}^2$ – of *C*.

Let D(x) be the real monic polynomial of degree $\sigma + \delta$, whose roots are the abscissae of the σ special crossings (in which the sign in the Conway sequence changes) and the abscissae of the δ nodes that are not crossings. A careful study of the sign alternations shows that

$$2b - 3 \le \deg z(t)D(x(t)) = c + 3(\delta + \sigma) \le c + 3(b - N - 1)$$

which is the announced result.

Consequence

Reduce to the study of trigonal plane curves of minimal degree *b* and the number of sign changes in the Gauss sequence.

Minimal diagrams vs of minimal degrees

 $9_{15} = C(2, 2, 2, 1, -3)$ of degree (3, 11, 16)

Minimal diagrams vs of minimal degrees

Minimal diagrams vs of minimal degrees

Adding a triple point (T-augmentation) 4 degree (3,11) 4 degree (3,8) 4 degree (3,8) 4 degree (3,8) 4 degree (3,5) 4 degree (3,2)

That proves that the lexicographic degree of 9_{15} is (3, 11, 16).

Definition

Let x, y be (possibly empty) sequences of nonnegative integers and m, n be nonnegative integers. The plane diagram D(x, m, n, y) is called a *T*-reduction of the diagram D(x, m + 1, 1, n + 1, y).

PSfrag replacements m - 1 n - 1 PSfrag replacements n – 1 т – т

Definition

Let x, y be (possibly empty) sequences of nonnegative integers and m, n be nonnegative integers. The plane diagram D(x, m, n, y) is called a *T*-reduction of the diagram D(x, m + 1, 1, n + 1, y).

Proposition

Let D_1 and D_2 be two plane trigonal diagrams such that D_2 is obtained from D_1 by a **T**-reduction. Suppose that there exists a trigonal polynomial curve of degree (3, d - 3) with diagram D_2 . Then there exists a trigonal polynomial curve of degree (3, d) that is \mathcal{L} -isotopic to D_1 .

Sketch of Proof:

Let us start with a polynomial curve $C : x = P_3(t)$, $y = Q_d(t)$ that is \mathcal{L} -isotopic to the plane diagram D(u, m, n, v), where u, v are (possibly empty) sequences of nonnegative integers and m, n are nonnegative integers. By translation on x, we can suppose that [x = 0] separates the m crossings from the n crossings. We can also suppose that [x = 0] meets C in three points with nonzero y-coordinates. The curve (x, xy) will have the same double points as C and an additional triple point at x = y = 0. We claim that for ε small enough the curve $(P_3(t + \varepsilon), P_3(t) \cdot Q_d(t))$ will be \mathcal{L} -isotopic to either D(u, m + 1, 1, n + 1, v) or D(u, m, 1, 1, 1, n, v), depending on the sign of ε .

Example

We start with the polynomial parametrization $(T_3(t), T_4(t))$ of the trefoil D(1, 1, 1). We choose to add a triple point in (-3/4, 0) by considering the curve $x = T_3(t), y = Q_7(t)$ where $Q_7(t) = (T_3(t) + 3/4) \cdot (T_4(t) + 1)$.

3-strands Braids

$$B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

3-strands Braids

Associated braid

Let $\Phi : \mathbf{R}^4 \to \{(x, y) \in \mathbf{C}^2 \mid \text{Im} x > 0\}$. Let $S_r = \partial B_r$ the image of the 3-sphere of radius *r*. If $C \subset \mathbf{C}^2$ is a real algebraic curve, then all links $S_r \cap C$ are isotopic if *r* is large enough.

The link $L_C = S_r \cap C$, for r large enough, is called the link associated to the real algebraic curve C.

3-strands Braids

Associated braid

Let $\Phi : \mathbf{R}^4 \to \{(x, y) \in \mathbf{C}^2 \mid \text{Im} x > 0\}$. Let $S_r = \partial B_r$ the image of the 3-sphere of radius *r*. If $C \subset \mathbf{C}^2$ is a real algebraic curve, then all links $S_r \cap C$ are isotopic if *r* is large enough.

The link $L_C = S_r \cap C$, for r large enough, is called the link associated to the real algebraic curve C.

Theorem (Orevkov)

If C is a rational real algebraic curve, then the associated braid must be a 3-component link, quasipositive with non negative linking numbers.

Theorem (Orevkov)

If C is a rational real algebraic curve, then the associated braid must be a 3-component link, quasipositive with non negative linking numbers.

Definition

A braid $\mathfrak{b} \in B_3$ is said to be *quasipositive* if it can be written in the form

$$\mathfrak{b} = \prod_{i=1}^{l} w_i \sigma_1 w_i^{-1} \qquad \text{with } w_1, \cdots, w_l \in B_3.$$
(2)

The quasipositivity problem in B_3 has been solved by Orevkov (2015).

Looking for a degree 10 trigonal curve

A trigonal curve of degree (3, b) has b - 1 double points. Such a curve has exactly one solitary node. Only two possibilities:

Looking for a degree 10 trigonal curve

A trigonal curve of degree (3, b) has b - 1 double points. Such a curve has exactly one solitary node. Only two possibilities:

Associated braids

$$b_1 = \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-3} \sigma_2^{-3} \sigma_1^{-3} (\sigma_1 \sigma_2 \sigma_1)^4$$
Linking numbers are -1,0,1
Not a 3-components link

Looking for a degree 10 trigonal curve

A trigonal curve of degree (3, b) has b - 1 double points. Such a curve has exactly one solitary node. Only two possibilities:

The alternating diagram has degree (3, 11, 13) at least. C(2, 2, 1, -4) is another diagram of 8₆. It can be reduced to the trefoil

$$D(2,\underline{2,1,4}) \longrightarrow D(\underline{2,1,3}) \longrightarrow D(1,2)$$

by 2 **T**-reductions. It has degree (3, 10, 14). 8₆ has degree (3, 10, 14).

Strategy

For a given knot $K = C(m_1, \ldots, m_k)$,

- Compute an upper bound b_0 for deg y (Chebyshev diagram, see KP 2011).
 - **•** Compute all diagrams with $b_0 1$ or less crossings. Compute all continued fractions of length $< b_0$.
- For each diagram,
 - Compute a lower bound b using Bézout-like boundaries.
 - Use possible T-reductions to get explicit constructions and upper bound.
 - If necessary, compute all possible braids associated to hypothetical plane curves of degree b < b₀ and test the conditions: quasipositivity, 3-components link, linking numbers.
- If the lower bound and the upper bound coincide, then we have determined the lexicographic degree (3, b, c) of the knot.

Strategy

For a given knot $K = C(m_1, \ldots, m_k)$,

- Compute an upper bound b_0 for deg y (Chebyshev diagram, see KP 2011).
 - Compute all diagrams with $b_0 1$ or less crossings. Compute all continued fractions of length $< b_0$.
- For each diagram,
 - Compute a lower bound b using Bézout-like boundaries.
 - Use possible T-reductions to get explicit constructions and upper bound.
 - If necessary, compute all possible braids associated to hypothetical plane curves of degree b < b₀ and test the conditions: quasipositivity, 3-components link, linking numbers.
- If the lower bound and the upper bound coincide, then we have determined the lexicographic degree (3, b, c) of the knot.

Example

 $11_{a205} = C(2, 3, 1, 1, 1, 3).$

$$D(2,3,\underline{1,1,1},3) \longrightarrow D(2,3,3)$$

deg $D(2,3,3) \ge (3,11)$. Then we deduce deg $D(2,3,1,1,1,3) \ge (3,14)$. Another diagram is C(2,3,1,2,-4) and we have

$$D(2, \underline{3,1,2}, 4) \longrightarrow D(2, \underline{2,1,4}) \longrightarrow D(\underline{2,1,3}) \longrightarrow D(1,2)$$

deg D(1,2) = (3,4). Then deg D(2,3,1,2,4) = (3,13) and then 11_{a205} has degree (3,13,20).

Preliminary diagrams

Fact (BKP 2016)

The degree of the torus knot C(n) or C(a, b) is $(3, \lfloor \frac{3N-1}{2} \rfloor, \lfloor \frac{3N}{2} \rfloor)$.

Preliminary diagrams

Fact (BKP 2016)

The degree of the torus knot C(n) or C(a, b) is $(3, \lfloor \frac{3N-1}{2} \rfloor, \lfloor \frac{3N}{2} \rfloor)$.

- ▶ *b* = 1: *D*(0,0)
- ▶ *b* = 2: *D*(1), *D*(0, 1)
- ▶ b = 4: D(0, 2), D(2, 1)
- **b** = 5: D(0, 1, 1, 0), D(2, 2), D(1, 1, 1, 1), D(0, 3), D(1, 2, 0)
- **b** = 7: D(5), D(1, 4), D(0, 4)

Preliminary diagrams

Fact (BKP 2016)

The degree of the torus knot C(n) or C(a, b) is $(3, \lfloor \frac{3N-1}{2} \rfloor, \lfloor \frac{3N}{2} \rfloor)$.

- ▶ *b* = 1: *D*(0,0)
- ▶ b = 2: D(1), D(0, 1)
- ▶ b = 4: D(0, 2), D(2, 1)
- **b** = 5: D(0, 1, 1, 0), D(2, 2), D(1, 1, 1, 1), D(0, 3), D(1, 2, 0)
- **b** = 7: D(5), D(1, 4), D(0, 4)

Results

Name	Fraction	Conway Not.	Lex. deg.	Cheb. deg.	diagram	Constr.
3 ₁	3	C(3)	(3, 4, 5)	4	C(3)	D(3)
4 ₁	5/2	C(2, 2)	(3, 5, 7)	5	C(2,2)	D(2,2)
5 ₁	5	C(5)	(3, 7, 8)	7	C(5)	D(5)
5 ₂	7/2	C(3, 2)	(3, 7, 8)	7	C(3, 1, 1)	D(2,0) + T
6 ₁	9/2	C(4, 2)	(3, 8, 10)	8	C(4,2)	D(3, 0) + T
6 ₂	11/3	C(3, 1, 2)	(3, 7, 11)	8	C(3, 1, 2)	D(2, 1) + T
6 ₃	13/5	C(2, 1, 1, 2)	(3, 7, 11)	7	C(2, 1, 1, 2)	$D(3) + \mathbf{T}$
7 ₁	7	C(7)	(3, 10, 11)	10	C(7)	D(7)
7 ₂	11/2	C(5,2)	(3, 10, 11)	10		Cheb.
7 ₃	13/3	C(4, 3)	(3, 10, 11)	10		Cheb.
74	15/4	C(3, 1, 3)	(3, 8, 13)	10	C(3, 1, 3)	D(2,2) + T
7 5	17/5	C(3, 2, 2)	(3, 10, 11)	10	C(2, 1, 1, -4)	$D(5) + \mathbf{T}$
7 ₆	19/7	C(2, 1, 2, 2)	(3, 8, 13)	10		$D(0, 1) + 2\mathbf{T}$
7 ₇	21/8	C(2, 1, 1, 1, 2)	(3, 8, 13)	8		Cheb.
8 ₁	13/2	C(6, 2)	(3, 11, 13)	11		Cheb.
8 ₂	17/3	C(5, 1, 2)	(3, 10, 14)	11		D(4, 1) + T
8 ₃	17/4	C(4, 4)	(3, 11, 13)	11		Cheb.
84	19/4	C(4, 1, 3)	(3, 10, 14)	11	C(4, 1, 2, 1)	$D(2, 0) + 2\mathbf{T}$
86	23/7	C(3, 3, 2)	(3, 10, 14)	11	C(2, 2, 1, -4)	$D(1,2) + 2\mathbf{T}$
87	23/5	C(4, 1, 1, 2)	(3, 10, 14)	10		Cheb.
8 ₈	25/9	C(2, 1, 3, 2)	(3, 10, 14)	10		Cheb.
8 ₉	25/7	C(3, 1, 1, 3)	(3, 10, 14)	11		$D(5) + \mathbf{T}$
8 ₁₁	27/8	C(3, 2, 1, 2)	(3, 10, 14)	11		$D(2, 0) + 2\mathbf{T}$
8 ₁₂	29/12	C(2, 2, 2, 2)	(3, 11, 13)	11		Cheb.
8 ₁₃	29/8	C(3, 1, 1, 1, 2)	(3, 10, 14)	10		Cheb.
814	31/12	C(2, 1, 1, 2, 2)	(3, 10, 14)	11		$D(2, 0) + 2\mathbf{T}$

Name	Fraction	Conway Not.	Lex. deg.	Cheb. deg.	diagram	Constr.
9 ₁	9	C(9)	(3, 13, 14)	13		Cheb.
9 ₂	15/2	C(7, 2)	(3, 13, 14)	13		Cheb.
9 ₃	19/3	C(6, 3)	(3, 13, 14)	13		Cheb.
94	21/4	C(5, 4)	(3, 13, 14)	13		Cheb.
9 ₅	23/4	C(5, 1, 3)	(3, 11, 16)	13	C(5, 1, 2, 1)	$D(3, 0) + 2\mathbf{T}$
9 ₆	27/5	C(5, 2, 2)	(3, 13, 14)	13		Cheb.
97	29/9	C(3, 4, 2)	(3, 13, 14)	13		Cheb.
9 ₈	31/11	C(2, 1, 4, 2)	(3, 11, 16)	13	C(2, 1, 4, 1, 1)	$D(1, 2, 0) + 2\mathbf{T}$
9 ₉	31/7	C(4, 2, 3)	(3, 13, 14)	13		Cheb.
9 ₁₀	33/10	C(3, 3, 3)	(3, 11, 16)	13	C(3, 2, 1, -4)	$D(0, 1) + 3\mathbf{T}$
9 ₁₁	33/7	C(4, 1, 2, 2)	(3, 10, 17)	13		D(3) + 2T
9 ₁₂	35/8	C(4, 2, 1, 2)	(3, 11, 16)	13		$D(3, 0) + 2\mathbf{T}$
9 ₁₃	37/10	C(3, 1, 2, 3)	(3, 10, 17)	13		$D(1,2) + 2\mathbf{T}$
9 ₁₄	37/8	C(4, 1, 1, 1, 2)	(3, 11, 16)	11		$D(3,0) + 2\mathbf{T}$
9 ₁₅	39/16	C(2, 2, 3, 2)	(3, 11, 16)	13	C(2, 2, 2, 1, -3)	$D(1, 0) + 3\mathbf{T}$
9 ₁₇	39/14	C(2, 1, 3, 1, 2)	(3, 10, 17)	11		D(3) + 2T
9 ₁₈	41/12	C(3, 2, 2, 2)	(3, 13, 14)	13		Cheb.
9 ₁₉	41/16	C(2, 1, 1, 3, 2)	(3, 11, 16)	11		$D(3, 0) + 2\mathbf{T}$
9 ₂₀	41/11	C(3, 1, 2, 1, 2)	(3, 10, 17)	13		D(3) + 2T
9 ₂₁	43/12	C(3, 1, 1, 2, 2)	(3, 11, 16)	13		$D(3, 0) + 2\mathbf{T}$
9 ₂₃	45/19	C(2, 2, 1, 2, 2)	(3, 10, 17)	13		$D(3) + \mathbf{T}$
9 ₂₆	47/13	C(3, 1, 1, 1, 1, 2)	(3, 10, 17)	11		D(3) + 2T
9 ₂₇	49/18	C(2, 1, 2, 1, 1, 2)	(3, 10, 17)	13		$D(3) + 2\mathbf{T}$
9 ₃₁	55/21	C(2, 1, 1, 1, 1, 1, 2)	(3, 10, 17)	10		Cheb.

Results for the 186 2-bridge knots with 11 or fewer crossings (1873 diagrams to consider).

16 knots are such that the alternating diagram is not of lexicographic degree.

References

- E. Brugallé, P. -V. Koseleff, D. Pecker. *Untangling trigonal diagrams*, J. Knot Theory Ramifications **25(7)**, (2016) 10p.
- E. Brugallé, P. -V. Koseleff, D. Pecker, On the lexicographic degree of two-bridge knots, J. Knot Theory Ramifications 25(7), (2016) 17p.
- E. Brugallé, P. -V. Koseleff, D. Pecker, *On the lexicographic degree of two-bridge knots*, Ann. Fac. Sciences Toulouse, to appear, 30p.

Erwan BRUGALLÉ Université de Nantes, Centre Mathématiques Jean Leray e-mail: erwan.brugalle@math.cnrs.fr

Pierre-Vincent KOSELEFF Université Pierre et Marie Curie (UPMC Sorbonne Université), Institut de Mathématiques de Jussieu (IMJ-PRG) & Inria-Paris e-mail: pierre-vincent.koseleff@upmc.fr

Daniel PECKER Université Pierre et Marie Curie (UPMC Sorbonne Université), Institut de Mathématiques de Jussieu (IMJ-PRG),

e-mail: danielpecker@wanadoo.fr