STRUCTURED LOW RANK DECOMPOSITION, COMPLETION AND APPLICATIONS

HARMOUCH Jouhayna

UPEC, LAMA INRIA, France

February 4, 2019

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

TABLE OF CONTENTS

Applications and Motivations

MULTIVARIATE HANKEL MATRICES AND FORMAL POWER SERIES

Decomposition of Low Rank Multivariate Hankel Matrices

Multi-Symmetric and Symmetric Tensor Decomposition

Algorithm

Completion of Hankel Matrices: SVT method

NEWTON ITERATION TO REMOVE PERTURBATION ON SERIES

Applications and Motivations

- Engineering Disciplines:
 - Signal Processing,
 - Scientific Data Analysis,
 - Statistics,
 - Bioinformatics,
 - Neuroscience.
- Algebraic Statistics Models:
 - Phylogenetic Trees Model,
 - The Analysis of Contents of Web Pages Model.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 = ∽ � � � ●

FIBER CROSSING DETECTION MODEL

Modeling the Fibers Orientation Function **ODF** which describes the diffusion of white matter in brain, by a tensor T of dimension 3 and order 4.

ODF TENSOR: NUMERICAL RESULTS

FIGURE: Angular error between input and output directions

◆□> ◆□> ◆三> ◆三> ・三> ・ シッペ

THE ANALYSIS OF CONTENTS OF WEB PAGES MODEL

document 3:13 words

document 2:12 words

document 1:11 words

New York Times Magazine U N documents

english vocabulary n words

- * Collection: N documents
- * What is the topic of a document?
- * Each document is represented by a vector $c \in \mathbb{R}^n$ where each component is the occurence of a word drawn from a vocabulary which contains *n* words. This is a sparse vector.

<u>Theorem</u>: Let x_1, x_2, x_3 be the first three words of a corpus independently drawn from a discrete distribution specified by the $\sum_{i=1}^{r} h_i \xi_i$. If

$$M_1 := P(x_1) \tag{1}$$

$$M_2 := P(x_1 \otimes x_2) - \frac{\alpha_0}{\alpha_0 + 1} M_1 \otimes M_1$$
(2)

and

$$M_{3} = P(x_{1} \otimes x_{2} \otimes x_{3}) - \frac{\alpha_{0}}{\alpha_{0} + 2} (P(M_{1} \otimes x_{1} \otimes x_{2}) + P(x_{1} \otimes M_{1} \otimes x_{2}) + P(x_{1} \otimes x_{2} \otimes M_{1})) + \frac{2\alpha_{0}^{2}}{(\alpha_{0} + 2)(\alpha_{0} + 1)} M_{1} \otimes M_{1} \otimes M_{1}$$

$$(3)$$

then

$$M_2 := \sum_{\rho=1}^{r} \frac{\alpha_{\rho}}{(\alpha_0+1)(\alpha_0)} (\xi_{\rho})^2$$

and

$$M_{3} := \sum_{p=1}^{r} \frac{2\alpha_{p}}{(\alpha_{0}+2)(\alpha_{0}+1)\alpha_{0}} (\xi_{p})^{3}$$

where $\xi_{p} = (\xi_{p,1}, \ldots, \xi_{p,n}) \in \mathbb{R}^{n}$.

* We compute the 1-order tensors associated to all c vectors M_{1c} and we compute the mean $M_1 \in \mathbb{R}^n$ of all of them.

* We compute the 2-order tensors associated to all *c* vectors M_{2c} and we compute the mean $M_2 \in \mathbb{R}^{n*n}$ of all of them.

* We compute the singular value decomposition of $M_2 = USU^T$ and the whitening matrix $W = U_r S_r^{-\frac{1}{2}} \in \mathbb{R}^{n*r}$

* We compute the 3-order compressed tensors $K_{3c} \in \mathbb{R}^{r*r*r}$: $K_{3c} = (W^T, W^T, W^T).M_{3c}$ where $M_{3c} \in \mathbb{R}^{n*n*n}$ and we compute the mean $K_3 \in \mathbb{R}^{r*r*r}$ of all of them.

3-order tensor

* Each topic is represented by a probability vector and each component of it is equal to the probability of a word belongs to this topic

* Project a vector *c* corresponding to a fixed document on the new basis of vectors to compute the weights of each topic in the document.

topic: Politics ۷

◆□▶ ◆□▶ ◆注▶ ◆注▶ ○注 - のへで

Points =										
u i	a i,0	a	i, 1	a i,2	b i,0	b <i>i</i> ,1	b _{i,2}	C i,0	c <i>i</i> ,1	c i,2
u 1	1.0	-0.0	0936	-1.4190	1.0	-0.0936	-1.4199	1.0	-0.0936	-1.4190
u ₂	1.0	-1.1	1394	0.7793	1.0	-1.1394	0.7790	1.0	-1.1394	0.7793
U ₃	1.0	1	3	0.6183	1.0	1.3	0.6182	1.0	1.3	0.6183
Weights =		ω_1 ω_2	0.33	94 10						
<u>r</u> = 2		w3	0.52	40						

DUAL SPACE

Power Formal series :

$$\sigma(\mathbf{y}) = \sum_{lpha \in \mathbb{N}^n} \sigma_lpha rac{\mathbf{y}^lpha}{lpha !} \in \mathbb{C}[[\mathbf{y}]]$$

Linear Functional :

$$\sigma : \mathbb{C}[\mathbf{x}] \to \mathbb{C}$$
$$p = \sum_{\alpha \in \mathbf{A} \subset \mathbb{N}^n} p_{\alpha} \mathbf{x}^{\alpha} \mapsto \langle \sigma \mid p \rangle = \sum_{\alpha \in \mathbf{A} \subset \mathbb{N}^n} p_{\alpha} \sigma_{\alpha}.$$

Duality :

$$\mathbb{C}^{\mathbb{N}^n} \equiv \mathbb{C}[\mathbf{x}]^* \equiv \mathbb{C}[[\mathbf{y}]] \ L_0(\mathbb{C}^{\mathbb{N}^n}) \equiv \mathbb{C}[\mathbf{x}]$$

→ Hankel Operator :

$$\begin{array}{cccc} H_{\sigma}: \mathbb{C}[\mathbf{x}] & \to & \mathbb{C}[[\mathbf{y}]] \\ & p & \mapsto & p \star \sigma \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ \end{array}$$

13/53

HANKEL MATRICES

univariate-hankel mustivariate-hankes

Hankel Matrices:

 $H = [\sigma_{i+j}]_{0 \le i \le l, 0 \le j \le m}$

Multivariate Hankel Matrices:

$$H = [\sigma_{\alpha+\beta}]_{\alpha\in\mathbf{A},\beta\in\mathbf{B}}$$

Multivariate Hankel operators: $\sigma = (\sigma_{\alpha})_{\alpha \in \mathbb{N}^n} \in \mathbb{C}^{\mathbb{N}^n} \rightsquigarrow$

$$\begin{array}{rcl} H_{\sigma}: L_{0}(\mathbb{C}^{\mathbb{N}^{n}}) & \rightarrow & \mathbb{C}^{\mathbb{N}^{n}} \\ (p_{\alpha})_{\alpha} & \mapsto & (\sum_{\alpha} p_{\alpha} \sigma_{\alpha+\beta})_{\beta \in \mathbb{N}^{n}} \end{array}$$

$$\tag{4}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The moment matrix
$$H^{A,B}_{\sigma}$$
 of $\sigma: (\mathbf{x}^{\beta})_{\beta \in B}$ and $(\frac{\mathbf{y}^{\alpha}}{\alpha!})_{\alpha \in A} \rightsquigarrow$

$$H_{\sigma}^{\mathbf{A},\mathbf{B}} = [\sigma_{\alpha+\beta}]_{\alpha\in\mathbf{A},\beta\in\mathbf{B}}.$$

The evaluation at ξ :

$$\begin{aligned} \mathbf{e}_{\xi}(\mathbf{y}) &= \sum_{\alpha \in \mathbb{N}^{n}} \xi^{\alpha} \, \frac{\mathbf{y}^{\alpha}}{\alpha!} = e^{\mathbf{y} \cdot \xi} \\ & \rightsquigarrow \forall p \in R, < \mathbf{e}_{\xi} | p > = \sum_{\alpha \in \mathbb{N}^{n}} p_{\alpha} \, \xi^{\alpha} = p(\xi). \end{aligned}$$

$$\bullet \, H_{\mathbf{e}_{\xi}} : p \mapsto p \star \mathbf{e}_{\xi} = p(\xi) \mathbf{e}_{\xi}, \\ \bullet \, H_{\xi}^{A,B} &= [\xi^{\beta + \alpha}]_{\beta \in B, \alpha \in A}, \text{ if } H_{\xi}^{A,B} \neq 0 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

DECOMPOSITION OF HANKEL MATRICES Decomposition of Quotient Algebra

<u>Theorem</u>:When the roots are simple, I_{σ} kernel of $H_{\sigma} :: \mathcal{A}_{\sigma} = \mathbb{C}[\mathbf{x}]/I_{\sigma}$ quotient algebra \rightsquigarrow

- $\sigma = \sum_{i=1}^{r} \omega_i \mathbf{e}_{\xi_i}(\mathbf{y})$ with $\omega_i \in \mathbb{C}$ are non-zeros, $\xi_i \in \mathbb{C}^n$ where ξ_i are distinct.
- H_{σ} is of rank *r* and the roots of multiplicity one.
- $(\mathbf{e}_{\xi_1}, \ldots, \mathbf{e}_{\xi_r})$ is a basis of $\mathcal{A}_{\sigma}^{\star}$.

The decomposition problem σ as a weighted sum of products of power of linear forms reduces to the solution of the polynomial equations p = 0 for p in the kernel I_{σ} of H_{σ} .

 $\mathbb{C}[\mathbf{x}]/I_{\sigma} \text{ is } \underline{\text{Artinian}} :: \text{finite dimension over } \mathbb{C}$ $\stackrel{\rightarrow}{\rightarrow} I_{\sigma} \text{ and } \mathcal{V}(I_{\sigma}) = \{\xi_1, \dots, \xi_r\} = \{\xi \in \mathbb{C}^n \mid \forall p \in I_{\sigma}, p(\xi) = 0\}$ $\stackrel{\rightarrow}{\rightarrow} \text{ decomposition of } \mathcal{A} \text{ as a sum of sub-algebras:}$ $\mathcal{A} = \mathbb{C}[\mathbf{x}]/I_{\sigma} = \mathcal{A}_1 \oplus \dots \oplus \mathcal{A}_r$ $\text{ where } \mathcal{A}_i = \mathbf{u}_{\xi_i} \mathcal{A} \sim \mathbb{C}[\mathbf{x}]/Q_i \text{ and } Q_i \text{ is the primary component of } I \text{ associated to the root } \xi_i \in \mathbb{C}^n.$

<u>The idempotents</u> $\mathbf{u}_{\xi_1}, \ldots, \mathbf{u}_{\xi_r} :: \mathbf{u}_{\xi_i}^2(\mathbf{x}) \equiv \mathbf{u}_{\xi_i}(\mathbf{x}), \sum_{i=1}^r \mathbf{u}_{\xi_i}(\mathbf{x}) \equiv 1.$

DECOMPOSITION OF HANKEL MATRICES Multiplication Operator

 $\underline{\mathsf{Multiplication}\ \mathsf{Operator:}\ } g \in \mathbb{C}[\mathbf{x}],\ \mathcal{M}_g$

$$\mathcal{M}_{g}: \mathcal{A} \to \mathcal{A}$$

 $h \mapsto \mathcal{M}_{g}(h) = g h.$

Transpose of Multiplication Operator:

$$\begin{array}{rccc} \mathcal{M}_{g}{}^{\intercal}: & \mathcal{A}^{*} & \to & \mathcal{A}^{*} \\ & \Lambda & \mapsto & \mathcal{M}_{g}{}^{\intercal}(\Lambda) = \Lambda \circ \mathcal{M}_{g} = g \star \Lambda \end{array}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

DECOMPOSITION OF HANKEL MATRICES

EIGENVALUES AND EIGENVECTORS

<u>**Theorem</u></u>: Let** *I* **ideal of \mathbb{C}[\mathbf{x}] and \mathcal{V}(I) = \{\xi_1, \xi_2, \dots, \xi_r\} such that \xi_i are simple \Rightarrow</u>**

- $\forall g \in \mathcal{A}$, the eigenvalues of \mathcal{M}_g and $\mathcal{M}_g^{\mathsf{T}}$ are the values $g(\xi_1), \ldots, g(\xi_r)$ of the polynomial g at the roots with multiplicities $\mu_i = \dim \mathcal{A}_i = 1$.
- The eigenvectors common to all $\mathcal{M}_g^{\mathsf{T}}$ with $g \in \mathcal{A}$ are up to a scalar the evaluations $\mathbf{e}_{\xi_1}, \ldots, \mathbf{e}_{\xi_r}$.
- If g is separating the roots, i.e. $g(\xi_p) \neq g(\xi_q)$ for $p \neq q$, then the eigenvectors of \mathcal{M}_g are, up to a scalar, interpolation polynomials \mathbf{u}_{ξ_i} at the roots ξ_i .

DECOMPOSITION OF HANKEL MATRICES BASES

Lemma: Let $B = \{b_1, \ldots, b_r\}$, $B' = \{b'_1, \ldots, b'_r\} \subset \mathbb{C}[\mathbf{x}]$. If the matrix $H^{B,B'}_{\sigma} = (\langle \sigma | b_i b'_j \rangle)_{1 \leq i,j \leq r}$ is invertible $\Rightarrow B$ and B' are linearly independent in \mathcal{A}_{σ} .

DECOMPOSITION OF HANKEL MATRICES MULTIPLICATION OPERATOR VIA TRUNCATED HANKEL MATRICES

Proposition: Let B, B' be basis of A_{σ} and $g \in \mathbb{C}[x]$. We have

$$H_{g\star\sigma}^{B,B'} = (M_g^{B})^{\mathsf{T}} H_{\sigma}^{B,B'} = H_{\sigma}^{B,B'} M_g^{B'}.$$
 (5)

where M_g^B (resp. $M_g^{B'}$) is the matrix of the multiplication by g in the basis B (resp. B') of A_{σ} .

Let $\sigma(\mathbf{y}) = \sum_{i=1}^{r} \omega_i \mathbf{e}_{\xi_i}(\mathbf{y})$ with $\omega_i \in \mathbb{C} \setminus \{0\}$ and $\xi_i \in \mathbb{C}^n$ distinct and simple.

Let B, B' be bases of $\mathcal{A}_{\sigma} \rightsquigarrow$

For g ∈ C[x], M_g^{B'} = (H^{B,B'}_σ)⁻¹H^{B,B'}_{g*σ}, (M_g^B)^T = H^{B,B'}_{g*σ}(H^{B,B'}_σ)⁻¹.
For g ∈ C[x], the generalized eigenvalues of (H^{B,B'}_{g*σ}, H^{B,B'}_σ) are g(ξ_i) with multiplicity 1, i = 1,...,r.
The generalized eigenvectors common to all (H^{B,B'}_{g*σ}, H^{B,B'}_σ) for g ∈ C[x] are - up to a scalar - (H^{B,B'}_σ)⁻¹B(ξ_i), i = 1,...,r.

SINGULAR VALUE DECOMPOSITION

$$\star \ \sigma_{\alpha}, |\alpha| \leq d, d_1 + d_2 \leq d, \ A_1 = (\mathbf{x}^{\alpha})_{|\alpha| \leq d_1} \text{ and } A_2 = (\mathbf{x}^{\beta})_{|\beta| \leq d_2}$$

Truncated Hankel operator associated to σ is:

$$\begin{array}{cccc} H^{d_1,d_2}_{\sigma} & : & \mathbb{C}[\mathtt{x}]_{d_2} & \to & (\mathbb{C}[\mathtt{x}]_{d_1})^* \\ & p & \mapsto & p \star \sigma \end{array}$$

<u>Truncated Hankel matrix</u> $H_{\sigma}^{d_1,d_2}$ Singular Value Decomposition

$$H_{\sigma}^{d_1,d_2} = USV^{\mathsf{T}}$$

* <u>Vectors</u>: $u_i = [u_{\alpha,i}]_{\alpha \in A_1}$, $v_j = [v_{\beta,j}]_{\beta \in A_2}$:: i^{th} and j^{th} col of U^{H} and \overline{V} * <u>Polynomials</u>: $u_i(\mathbf{x}) = u_i^{\text{T}} A_1 = \sum_{|\alpha| \le d_1} u_{\alpha,i} \mathbf{x}^{\alpha}$ and $v_j(\mathbf{x}) = v_j^{\text{T}} A_2 = \sum_{|\beta| \le d_2} v_{\beta,j} \mathbf{x}^{\beta}$. * <u>Bases</u>: $U_r^{\text{H}} := (u_i(\mathbf{x}))_{i=1,...,r}$ and $\overline{V}_r := (v_j(\mathbf{x}))_{j=1,...,r}$

Multiplication in the orthogonal basis

AND COMPUTATION OF WEIGHTS

Proposition: If rank $H_{\sigma}^{d_1,d_2} = r$,

*the sets of polynomials U_r^{H} and \overline{V}_r are bases of \mathcal{A}_σ . *The matrix $M_{x_i}^{\overline{V}_r}$ associated to the multiplication operator by x_i in the basis \overline{V}_r of \mathcal{A}_σ is $M_{x_i}^{\overline{V}_r} = S_r^{-1} U_r^{\mathsf{H}} H_{x_i \star \sigma}^{d_1, d_2} \overline{V}_r$ $i = 1, \dots, n$.

Proposition: Let $\sigma = \sum_{i=1}^{r} \omega_i \mathbf{e}_{\xi_i}$ with $\omega_i \in \mathbb{C} \setminus \{0\}$, $\overline{\xi_i} = (\xi_{i,1}, \dots, \xi_{i,n}) \in \mathbb{C}^n$ and $M_{x_j}^{\overline{V}_r}$ be the matrix of multiplication by x_j in the basis \overline{V}_r . Let \mathbf{v}_i be a common eigenvector of $M_{x_j}^{\overline{V}_r}$, j = 1, ..., n for the eigenvalues $\xi_{i,j}$. \Rightarrow the weight of \mathbf{e}_{ξ_i} in the decomposition of σ is

$$\omega_i = \frac{[1]^{\mathsf{T}} H_{\sigma}^{d_1, d_2} \overline{V}_r \mathbf{v}_i}{[\xi_i^{\alpha}]_{\alpha \in A_2}^{\mathsf{T}} \overline{V}_r \mathbf{v}_i}.$$

Algorithm 3.1: Decomposition of polynomial-exponential series with constant weights

Input: the moments σ_{α} of σ for $|\alpha| \leq \mathbf{d}$.

Let d_1 and d_2 be positive integers such that $d_1 + d_2 + 1 = d$, for example $d_1 := \lceil \frac{d-1}{2} \rceil$ and $d_2 := \lfloor \frac{d-1}{2} \rfloor$.

1. Compute the Hankel matrix $H_{\sigma_1,\sigma_2}^{\sigma_1,\sigma_2} = [\sigma_{(\alpha+\beta)}]_{\substack{|\alpha| \le d_1 \\ |\beta| \le d_2}}$ of σ in for the monomial sets

$$A_{\mathbf{1}} = (\mathbf{x}^{\alpha})_{|\alpha| \leq d_{\mathbf{1}}} \text{ and } A_{\mathbf{2}} = (\mathbf{x}^{\beta})_{|\beta| \leq d_{\mathbf{2}}}.$$

- 2. Compute the singular value decomposition of $H_{\sigma}^{d_1,d_2} = USV^{\mathsf{T}}$ with singular values $s_1 \geq s_2 \geq \cdots \geq s_m \geq 0$.
- 3. Determine its numerical rank, that is, the largest integer r such that $\frac{s_r}{s_1} \ge \epsilon$.

4. Form the matrices $M_{x_i}^{\overline{V}_r} = S_r^{-1} U_r^{-1} H_{x_i \star \sigma}^{d_1, d_2} \overline{V}_r$, i = 1, ..., n, where $H_{x_i \star \sigma}^{d_1, d_2}$ is the Hankel matrix associated to $x_i \star \sigma$.

5. Compute the eigenvectors \mathbf{v}_j of $\sum_{i=1}^{n} l_i M_{x_i}$ for a random choice of l_i in [-1, 1], $i = 1, \ldots, n$ and for each $j = 1, \ldots, r$ do the following:

a. Compute $\xi_{j,i}$ such that $M_i \mathbf{v}_j = \xi_{j,i} \mathbf{v}_j$ for i = 1, ..., n and deduce the point $\xi_j := (\xi_{j,1}, ..., \xi_{j,n})$. b. Compute $\omega_j = \frac{\langle \sigma | \mathbf{v}_j(\mathbf{x}) \rangle}{\mathbf{v}_j(\xi_j)} = \frac{[\mathbf{1}]^T H_\sigma^{d_1, d_2} \overline{\mathbf{v}}_r \mathbf{v}_j}{[\xi_i^\alpha]_{\alpha \in A_2}^T \overline{\mathbf{v}}_r \mathbf{v}_j}$ where [1] is the coefficient vector of 1 in the basis A_1 .

Output: $r \in \mathbb{N}$, $\omega_j \in \mathbb{C} \setminus (0)$, $\xi_j \in \mathbb{C}^n$, j=1,..., r such that $\sigma(\mathbf{y}) = \sum_{j=1}^r \omega_j \mathbf{e}_{\xi_j}(\mathbf{y})$ up to degree d.

DECOMPOSITION ALGORITHM: NUMERICAL RESULTS

FIGURE: The evolution of the error in terms of the perturbation $\epsilon = 10^{(-e)}$ on the moments of the form $\sigma_{\alpha} + \epsilon(p_{\alpha} + iq_{\alpha})$ with amplitude *M* for different values of *r*.

DECOMPOSITION ALGORITHM: NUMERICAL RESULTS

FIGURE: The evolution of the error in terms of the perturbation $\epsilon = 10^{(-e)}$ on the moments of the form $\sigma_{\alpha} + \epsilon(p_{\alpha} + iq_{\alpha})$ with amplitude M = 1 for different values of d and n.

DECOMPOSITION ALGORITHM: NUMERICAL RESULTS

FIGURE: The evolution of the error in terms of the perturbation $\epsilon = 10^{(-e)}$ on the moments of the form $\sigma_{\alpha} + \epsilon(p_{\alpha} + iq_{\alpha})$ with amplitude M = 10 for different values of d and n.

RESCALING

$$\star \lambda \neq 0,$$

$$\sigma(\mathbf{y}) := \sum_{\alpha \in N^{n}} \sigma_{\alpha} \frac{\mathbf{y}^{\alpha}}{\alpha!} \longrightarrow \tilde{\sigma}(\mathbf{y}) := \sigma(\lambda \mathbf{y}) = \sum_{\alpha \in N^{n}} \lambda^{|\alpha|} \sigma_{\alpha} \frac{\mathbf{y}^{\alpha}}{\alpha!},$$

$$\star e_{\xi}(\lambda \mathbf{y}) = e_{\lambda\xi}(\mathbf{y}).$$

$$\star \text{ Decomposition of } \tilde{\sigma}(\mathbf{y}) = \sigma(\lambda \mathbf{y}) \text{ from the moments } \tilde{\sigma}_{\alpha} = \lambda^{|\alpha|} \sigma_{\alpha}.$$

$$\star \text{ Inverse Scaling of frequencies } \tilde{\xi}_{i} :: \xi_{i} = \frac{\tilde{\xi}_{i}}{\lambda} = \left(\frac{\tilde{\xi}_{i,1}}{\lambda}, \dots, \frac{\tilde{\xi}_{i,n}}{\lambda}\right).$$

*
$$\lambda := \frac{1}{m}$$
 where $m = \frac{\max_{|\alpha|=d} |\sigma_{\alpha}|}{\max_{|\alpha|=d-1} |\sigma_{\alpha}|}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Rescaling numerical influence

FIGURE: The evolution of the relative error in terms of the amplitude M for different values of r.

Multi-symmetric tensor

 $(E_j)_{1\leq j\leq k}|dim(E_j)=n_j+1, E_j=\langle x_j\rangle=\langle x_j,\ldots,x_{j,n_j}\rangle.$

 $S^{\delta_j}(E_j) = \{p(\mathbf{x}_j) \text{homogeneous}, degree(p(\mathbf{x}_j)) = \delta_j\}.$

$$\mathcal{S}^{\delta}(E) = \mathcal{S}^{\delta_1}(E_1) \otimes \mathcal{S}^{\delta_2}(E_2) \otimes \ldots \otimes \mathcal{S}^{\delta_k}(E_k).$$

[*T*] $\in \mathcal{S}^{\delta}(E)$ is a multi symmetric tensor.

Notation:
$$\underline{\mathbf{x}} = (\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_k)$$
 and $\alpha = (\alpha_1, \dots, \alpha_k)$ and $\underline{\mathbf{x}}_j = (x_{j,1}, \dots, x_{j,n_j})$ and $\alpha_j = (\alpha_{j,0}, \dots, \alpha_{j,n_j})$ so that $\underline{T}(\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_k) = \sum_{\alpha_j \in \mathbb{N}^{n_j+1}, |\alpha_j| \le \delta_j} t_{\alpha_1, \dots, \alpha_k} \underline{\mathbf{x}}^{\alpha}$ where $\underline{\mathbf{x}}^{\alpha} = \prod_{j=1}^{k} \prod_{p=1}^{n_j} x_{j,p}^{\alpha_{j,p}}$

Multi-symmetric tensor

$$\begin{split} T(\mathbf{x}) &= T(\mathbf{x}_1, \dots, \mathbf{x}_k) \text{ : an multi-homogeneous polynomial of degree } \delta_j \text{ in the variable } \mathbf{x}_j = (x_{j,0}, \dots, x_{j,n_j}) \rightsquigarrow \\ [T] &= [t_{\alpha'_1, \alpha'_2, \dots, \alpha'_k}]_{\substack{|\alpha'_j| = \delta_j \\ \alpha'_j \in \mathbb{N}^{n_j + 1}}} \text{ : multi symmetric array of coefficients such } \\ \text{that each } \alpha'_j = (\alpha'_{j,p_j})_{0 \leq p_j \leq n_j} \text{ is a multi-index for } 1 \leq j \leq k. \end{split}$$

Let $u_{i,j,0} \neq 0, j = 1, \dots, k, i = 1, \dots, r$, then for $(u_{i,j,0})' = 1$ and $x_{j,0} = 1 \rightsquigarrow$

•
$$R = \mathbb{C}[\underline{\mathbf{x}}_1, \underline{\mathbf{x}}_2, \dots, \underline{\mathbf{x}}_k]$$
 where $\underline{\mathbf{x}}_j = (x_{j,1}, \dots, x_{j,n_j})$ for $j = 1, \dots, k$
• $R_{\delta_1, \delta_2, \dots, \delta_k} = \{T \in S^{\delta}(E) | x_{j,0} = 1, j = 1, \dots, k\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Multi Symmetric Tensor Decomposition

Sum of products of power of linear forms:

 $\begin{aligned} T(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k) &= \sum_{p=1}^r \omega_p \mathbf{u}_{p,1}^{\delta_1}(\mathbf{x}_1) \mathbf{u}_{p,2}^{\delta_2}(\mathbf{x}_2) \dots \mathbf{u}_{i,k}^{\delta_k}(\mathbf{x}_k) \text{ where} \\ \mathbf{u}_{p,j}(\mathbf{x}_j) &= u_{p,j} x_j + u_{p,j,1} x_{j,1} + \dots + u_{p,j,n_j} x_{j,n_j} \text{ and} \\ \mathbf{u}_p &= (u_{p,j,p_j})_{\substack{0 \leq p_j \leq n_j \\ 1 \leq j \leq k}} \in \mathbb{C}^{\sum_{j=1}^k (n_j+1)} \text{ is the coefficient vector associated to} \\ \text{the linear forms } \mathbf{u}_{p,j}(\mathbf{x}_j) \text{ in the basis } \mathbf{x}_j \text{ for } j = 1, \dots, k. \end{aligned}$

<u>Rank r of T</u>: Minimal number of terms in a decomposition of $T(\mathbf{x})$.

For
$$|\alpha_j| \leq \delta_j$$
, we denote $\bar{\alpha_j} := (\delta_j - |\alpha_j|, \alpha_{j,1}, \dots, \alpha_{j,n_j}), j = 1, \dots, k$
We identify $t_{\alpha_1', \dots, \alpha_k'} := t_{\bar{\alpha_1}, \dots, \bar{\alpha_k}}$.

By a generic change of coordinates in each E_j , we may assume that $u_{p,j} \neq 0$ and that T has an affine decomposition. Then by scaling $\mathbf{u}_p(\mathbf{x})$ and multiplying ω_p by the δ^{th} power of the scaling factor we may assume that $u_{p,j} = 1$ for $p = 1, \ldots, r$ and $j = 1, \ldots, k$. Thus the polynomial $\underline{T}(\underline{\mathbf{x}}) = \sum_{p=1}^{r} \omega_p' \mathbf{u}_p'^{\delta}(\underline{\mathbf{x}}) = \sum_{p=1}^{r} \omega_p' \mathbf{u}_{p,1}^{\delta_1}(\underline{\mathbf{x}}_1) \mathbf{u}_{p,2}^{\prime \delta_2}(\underline{\mathbf{x}}_2) \ldots \mathbf{u}_{p,k}^{\prime \delta_k}(\underline{\mathbf{x}}_k)$

$$T_{1}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k}), T_{2}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{k}) \in S^{\delta}(E) \rightsquigarrow$$
Apolar Product:

$$(\underline{T_{1}(\underline{\mathbf{x}}_{1}, \underline{\mathbf{x}}_{2}, \dots, \underline{\mathbf{x}}_{k}), \underline{T_{2}(\underline{\mathbf{x}}_{1}, \underline{\mathbf{x}}_{2}, \dots, \underline{\mathbf{x}}_{k})}_{\alpha_{j} \in \mathbb{N}^{n_{j}}} \sigma_{\alpha_{1}, \alpha_{2}, \dots, \alpha_{k}}^{(1)} \bar{\sigma}_{\alpha_{1}, \alpha_{2}, \dots, \alpha_{k}}^{(2)} \bar{\sigma}_{\alpha_{1}, \alpha_{2}, \dots, \alpha_{k}}^{(2)}$$
where $\binom{\delta}{\alpha} = \binom{\delta_{1}}{\alpha_{1}}\binom{\delta_{2}}{\alpha_{2}} \dots \binom{\delta_{k}}{\alpha^{k}}.$

Dual Operator:

$$T^*: (R_{\delta_1, \delta_2, \dots, \delta_k}) \to (R_{\delta_1, \delta_2, \dots, \delta_k})^*$$

$$T_2 \mapsto T^*(T_2) = \langle T(\mathbf{x}), T_2(\mathbf{x}) \rangle$$
(6)
(7)

For
$$T = (t_{\alpha_1,\alpha_2,...,\alpha_k})_{\substack{|\alpha_j| \le \delta_j \\ \alpha_j \in \mathbb{N}^{n_j}}} \in S^{\delta}(E) \rightsquigarrow$$

• $\sigma_{\alpha_1,\alpha_2,...,\alpha_k}(T) = \sigma_{\alpha_1,\alpha_2,...,\alpha_k} = t_{\alpha_1,\alpha_2,...,\alpha_k} {\binom{\delta_1}{\alpha_1}}^{-1} {\binom{\delta_2}{\alpha_2}}^{-1} \dots {\binom{\delta_k}{\alpha_k}}^{-1}.$
• Dual via the formal power series:
 $T^*(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k) = \sum_{\substack{|\alpha_j| \le \delta_j \\ \alpha_j \in \mathbb{N}^{n_j}}} \sigma_{\alpha_1,\alpha_2,...,\alpha_k} \frac{(\mathbf{y}_1)^{\bar{\alpha}_1}}{\bar{\alpha}_1!} \frac{(\mathbf{y}_2)^{\bar{\alpha}_2}}{\bar{\alpha}_2!} \dots \frac{(\mathbf{y}_k)^{\bar{\alpha}_k}}{\bar{\alpha}_k!}$
where $(\mathbf{y}_j)^{\bar{\alpha}_j} = (y_j, y_{j,1}, \dots, y_{j,n_j})^{(\alpha_j,\alpha_{j,1},...,\alpha_{j,n_j})} = \prod_{\substack{p_j=0 \\ p_j=0}}^{n_j} (y_{j,p_j})^{\alpha_{j,p_j}}$ for
 $j = 1, \dots, k$

33/53

<u>Dual</u> of $\mathbf{u}_1^{\delta_1} \mathbf{u}_2^{\delta_2} \dots \mathbf{u}_k^{\delta_k}$ is the <u>evaluation</u> $\mathbf{e}_{\mathbf{u}}$ at $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k)$.

Thus if $T = \sum_{i=1}^{r} \omega_i \mathbf{u}_{i,1}^{\delta_1} \mathbf{u}_{i,2}^{\delta_2} \dots \mathbf{u}_{i,k}^{\delta_k}$, then T^* coincides with the weighted sum of evaluations $T^* = \sum_{i=1}^{r} \omega_i \mathbf{e}_{\mathbf{u}_i}$ on $R_{\delta_1, \delta_2, \dots, \delta_k}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ●

MULTI-LINEAR TENSOR DECOMPOSITION PROBLEM

 $A_1, A_2 \mid R_{1,1,...,1}$

•
$$H_0 = H_{T^*}^{A_1, A_2} = [t_{\alpha+\beta}]_{\alpha \in A_1 \beta \in A_2}$$

• $H_{1, i_1} = H_{x_{1, i_1} \star T^*}^{A_1, A_2} = H_{T^*}^{x_{1, i_1} A_1, A_2} = [t_{\alpha+\beta}]_{\alpha \in x_{1, i_1} \star A_1, \beta \in A_2}$
• $\hat{H}_0 = \sum_{i_1=0}^{n_1} \lambda_{i_1} H_{1, i_1}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

•Truncated Singular Value Decomposition: H_0 , $H_{x_{1,i_1}}$ and $\hat{H}_0 \rightsquigarrow H_0^r$, $H_{x_{1,i_1}}^r$ and Ĥ'n $H_{x_1,i_1}^r = (M_{x_1,i_1}^{U_r^{\mathsf{H}}})^{\mathsf{T}} H_0^r = H_0^r M_{x_1,i_1}^{\overline{V}_r}$ where $M_{x_1,i_2}^{U_r^{H}}$ (resp. $M_{x_1,i_2}^{\overline{V}_r}$) is the multiplication matrix by x_{1,i_1} in the basis U_r^{H} (resp. \overline{V}_r) and $M_{x_{1,i_1}}^{V_r}$ is the multiplication matrix by x_{1,i_1} in the basis \overline{V}_r . • By linearity: $\hat{H}_0^r = \sum_{i_1=0}^{n_2} \lambda_{i_1} H_{x_1}^r = H_0^r \sum_{i_1=0}^{n_2} \lambda_{i_1} M_{x_1,i_1}^{\overline{V}_r} = H_0^r M_{\lambda(x_1)}^{\overline{V}_r} \Rightarrow$ $(\widehat{H}_{0}^{r})^{-1} = (M_{\lambda(r_{r})}^{\overline{V}_{r}})^{-1} (H_{0}^{r})^{-1}$ $(\widehat{H}_0^r)^{-1}H_{\mathbf{x}_1,\mathbf{i}_1}^r = (M_{\lambda(\mathbf{x}_1)}^{\overline{V}_r})^{-1}M_{\mathbf{x}_1,\mathbf{i}_1}^{\overline{V}_r} = M_{(\mathbf{x}_1,\mathbf{i}_1/\lambda(\mathbf{x}_1))}^{\overline{V}_r}$

We compute the eigenvalues and the eigenvectors of the multiplication matrices $M_{(\mathbf{x_1}, \mathbf{i_1}/\lambda(\mathbf{x_1}))}^{\overline{V}_r}$ in order to obtain the weights and the points of the decomposition.

MULTIPLICATION OPERATORS IN THE ORTHOGONAL BASIS

Proposition: Let $\sigma = \sum_{i=1}^{r'} \omega_i \mathbf{e}_{\xi_i}$ with $\omega_i \in \mathbb{C}$, $\xi_i \in \mathbb{C}^n$ are simple. If rank $H_{\sigma}^{\mathbf{A_1},\mathbf{A_2}} = r$, •The matrix $M_{\mathbf{x_{1,i_1}}}^{\overline{V}_r}$ associated to the multiplication operator by y_i in the basis \overline{V}_r of \mathcal{A}_{σ} is $M_{\mathbf{x_{1,i_1}}}^{\overline{V}_r} = S_r^{-1} U_r^{\mathsf{H}} H_{\mathbf{x_{1,i_1}},\mathbf{x}\sigma}^{\overline{A_1},\overline{A_2}} \overline{V}_r$ $i = 1, \dots, n$.

・ロト ・日 ・ モ ・ モ ・ ・ モ ・ うへで

Algorithm 5.1: Decomposition of Tri-Linear Tensor with constant weights

the moments $(t_{i,j,k})_{\substack{0 \le i \le n_1 \\ 0 \le j \le n_2 \\ 0 \le k \le n_3}}$ of σ .

1. Compute the monomial sets $A_1 = (x_i)_{0 \le i \le n_1}$ and $A_2 = (z_k)_{0 \le k \le n_3}$ and substitute the x_0, y_0 and z_0 by 1 to define $\overline{A_1}$ and $\overline{A_2}$.

2. Compute the truncated Hankel matrix $H_{\sigma}^{\overline{A}_1,\overline{A}_2}$ for the monomial sets \overline{A}_1 and \overline{A}_2 .

3. Compute the singular value decomposition of $H_{\sigma}^{\overline{A}_{1},\overline{A}_{2}} = USV^{T}$ where $\overline{A}_{1} = \langle 1, x_{1}, \ldots, x_{n_{1}} \rangle$ and $\overline{A}_{2} = \langle 1, z_{1}, \ldots, z_{n_{3}} \rangle$ with singular values $s_{1} \geq s_{2} \geq \cdots \geq s_{r} \geq 0$.

4. Determine its numerical rank, that is, the largest integer r such that $\frac{s_r}{s_1} \ge \epsilon$.

5. Form the multiplication matrices by x_{2,j_2} in the basis \overline{V}_r , $M_{x_{2,j_2}}^{\overline{V}_r} = S_r^{-1} U_r^{\mathsf{H}} H_{x_{2,j_2} \star \sigma}^{\overline{A}_1, \overline{A}_2} \overline{V}_r$ where $H_{x_{2,j_2} \star \sigma}^{\overline{A}_1, \overline{A}_2}$ is the Hankel matrix associated to $x_{2,j_2} \star \sigma$ for $j = 1, \ldots, n_2$. 6. Compute the eigenvectors \mathbf{v}_{p} of $\sum_{j=1}^{n_{2}} l_{j} M_{\mathbf{x}_{2,j_{2}}}^{\overline{V}_{r}}$ such that $|l_{j}| \leq 1, j = 1, \dots, n_{2}$ and for each $p = 1, \dots, r$ do the following:

• The y's coordinates of the \mathbf{u}_p are the eigenvalues of the multiplication matrices by x_{2,j_2} . Use the formula $M_{x_2,j_2}^{\overline{V}_r} \mathbf{v}_p = \mathbf{b}_{p,j} \mathbf{v}_p$ for $p = 1, \ldots, r$ and $j = 1, \ldots, n_2$ and deduce the $b_{p,j}$. • Write the matrix $H_{\sigma}^{\overline{A}_1,\overline{A}_2}$ in the basis of interpolation polynomials (ie. the eigenvectors \mathbf{v}_p) and use the corresponding matrix $\mathcal{T} = [\sigma(x_{3,i_3}\mathbf{v}_j)]_{\substack{1 \le i \le n \\ 1 \le i \le r}}$ to compute the z's coordinates. Divide the k^{th} row on the first row of the matrix T to obtain the values of $c_{p,k}$ for p = 1, ..., r and $k = 1, ..., n_3$. • The x's coordinates of \underline{u}_p are computed using the eigenvectors of the transpose of the matrix $M_{x_2}^{\overline{V}_r}$. They -are up to scalar- the evaluations, they are represented by vectors of the form $\mathbf{v}_{p}^{*} = \mu_{p}[1, \mathbf{a}_{p,1}, \dots, \mathbf{a}_{p,n_{1}}]$. Compute \mathbf{v}_{p}^{*} as the p^{th} column of the transpose of the inverse of the matrix $V = [v_1, \ldots, v_r]$ for $p = 1, \ldots, r$ and deduce $a_{p,i} = \frac{v_p^*[i+1]}{v^*[1]}$ for $p = 1, \ldots, r$ and $i = 1, \ldots, n_1$. • Compute $\omega_p = \frac{\langle \sigma | \mathbf{v}_p \rangle}{\mathbf{v}_p \langle \mathbf{v}_p \rangle}$.

EX3:DECOMPOSITION OF REAL COEFFICIENTS TENSOR

$$\begin{split} \mathbf{x} &= (\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3), \mathbf{y} = (\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3), \mathbf{x} = (\mathbf{z}_0, \mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3). \\ \hline P(\mathbf{x}, \mathbf{y}, \mathbf{z}) &= 0.0264\mathbf{x}_0\mathbf{y}_0\mathbf{z}_0 - 0.0207\mathbf{x}_0\mathbf{y}_0\mathbf{z}_1 - 0.0065\mathbf{x}_0\mathbf{y}_0\mathbf{z}_2 - 0.0208\mathbf{x}_0\mathbf{y}_0\mathbf{z}_3 - 0.0512\mathbf{x}_0\mathbf{y}_1\mathbf{z}_0 + 0.0315\mathbf{x}_0\mathbf{y}_1\mathbf{z}_2 + 1.031\mathbf{x}_0\mathbf{y}_1\mathbf{z}_3 + 0.0056\mathbf{x}_0\mathbf{y}_2\mathbf{z}_0 - 0.0194\mathbf{x}_0\mathbf{y}_2\mathbf{z}_1 + 0.0256\mathbf{x}_0\mathbf{y}_2\mathbf{z}_2 - 0.0194\mathbf{x}_0\mathbf{y}_2\mathbf{z}_1 + 0.0256\mathbf{x}_0\mathbf{y}_2\mathbf{z}_2 - 0.0194\mathbf{x}_0\mathbf{y}_2\mathbf{z}_1 + 0.0256\mathbf{x}_0\mathbf{y}_2\mathbf{z}_2 - 0.0194\mathbf{x}_0\mathbf{y}_2\mathbf{z}_1 + 0.0217\mathbf{x}_0\mathbf{y}_2\mathbf{z}_3 - 0.0214\mathbf{y}_0\mathbf{y}_3\mathbf{z}_0 + 0.0021\mathbf{x}_0\mathbf{y}_2\mathbf{z}_1 + 0.0071\mathbf{x}_0\mathbf{y}_3\mathbf{z}_2 + 0.0253\mathbf{x}_1\mathbf{y}_1\mathbf{z}_1 + 0.04\mathbf{x}_1\mathbf{y}_1\mathbf{z}_2 + 0.0194\mathbf{x}_1\mathbf{y}_2\mathbf{z}_3 - 0.0101\mathbf{x}_1\mathbf{y}_0\mathbf{z}_0 - 0.0092\mathbf{x}_1\mathbf{y}_0\mathbf{z}_3 + 1.287\mathbf{x}_1\mathbf{y}_1\mathbf{z}_0 + 0.0253\mathbf{x}_1\mathbf{y}_1\mathbf{z}_1 + 0.04\mathbf{x}_1\mathbf{y}_1\mathbf{z}_2 + 0.0446\mathbf{x}_1\mathbf{y}_1\mathbf{z}_3 - 0.0149\mathbf{x}_1\mathbf{y}_2\mathbf{z}_0 + 0.0204\mathbf{x}_1\mathbf{y}_2\mathbf{z}_1 + 0.0117\mathbf{x}_1\mathbf{y}_2\mathbf{z}_2 + 0.0347\mathbf{x}_1\mathbf{y}_2\mathbf{z}_3 - 0.0101\mathbf{x}_1\mathbf{y}_3\mathbf{z}_0 + 0.0092\mathbf{x}_1\mathbf{y}_0\mathbf{z}_0 + 0.0202\mathbf{x}_2\mathbf{y}_0\mathbf{z}_1 + 0.0117\mathbf{x}_1\mathbf{y}_2\mathbf{z}_2 + 0.0347\mathbf{x}_1\mathbf{y}_2\mathbf{z}_3 - 0.0101\mathbf{x}_1\mathbf{y}_3\mathbf{z}_0 - 0.0005\mathbf{x}_1\mathbf{y}_2\mathbf{z}_3 - 0.01661\mathbf{x}_2\mathbf{y}_1\mathbf{z}_1 + 0.0352\mathbf{x}_2\mathbf{y}_1\mathbf{z}_2 - 2.197\mathbf{x}_2\mathbf{y}_1\mathbf{z}_3 - 0.0268\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0324\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0208\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.0228\mathbf{x}_2\mathbf{y}_2\mathbf{z}_1 - 0.0268\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0208\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.0222\mathbf{x}_2\mathbf{y}_2\mathbf{z}_1 - 0.0268\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.0161\mathbf{x}_1\mathbf{y}_3\mathbf{z}_0 - 0.022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_0 - 0.022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_1 - 0.0268\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0324\mathbf{x}_2\mathbf{y}_2\mathbf{z}_1 - 0.0288\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 1.569\mathbf{x}_2\mathbf{y}_2\mathbf{z}_1 - 0.028\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.008\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.008\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.028\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_0 - 0.022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_1 - 0.0022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_1 - 0.0022\mathbf{x}_2\mathbf{y}_3\mathbf{z}_1 - 0.0028\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.034\mathbf{x}_2\mathbf{y}_2\mathbf{z}_1 - 0.028\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 - 0.038\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.0028\mathbf{x}_2\mathbf{y}_2\mathbf{z}_2 + 0.038\mathbf{x}_2\mathbf{x}_2$$

$$\mathcal{H}_{\sigma}^{\overline{A}_{1},\overline{A}_{2}} = USV^{\mathsf{T}} = \begin{bmatrix} 1 & x_{1} & x_{2} & x_{3} \\ t_{0,0,0} & t_{1,0,0} & t_{2,0,0} & t_{3,0,0} \\ t_{0,0,1} & t_{1,0,1} & t_{2,0,1} & t_{3,0,1} \\ t_{0,0,2} & t_{1,0,2} & t_{2,0,2} & t_{3,0,2} \\ t_{0,0,3} & t_{1,0,3} & t_{2,0,3} & t_{3,0,3} \end{bmatrix} \begin{bmatrix} 1 \\ z_{1} \\ z_{2} \\ z_{3} \end{bmatrix}$$
$$= \begin{bmatrix} 0.0264 & -0.0017 & -0.0199 & 0.0267 \\ -0.0207 & 0.0196 & 0.0202 & -0.0225 \\ -0.0065 & -0.0173 & 0.0025 & -0.0181 \\ -0.0208 & -0.0092 & 0.0329 & 0.0028 \end{bmatrix} \begin{bmatrix} 1 \\ z_{2} \\ z_{3} \\ z_{3} \end{bmatrix}$$

$$S = \begin{bmatrix} 0.0681 & 0 & 0 & 0 \\ 0 & 0.0284 & 0 & 0 \\ 0 & 0 & 0.0199 & 0 \\ 0 & 0 & 0 & 3.3112 * 10^{-12} \end{bmatrix}$$

epsilon = 10⁻¹⁰ r = 3

$$H_{y_i\sigma}^{\overline{A}_1,\overline{A}_2} = \begin{bmatrix} t_{0,0,0} & t_{1,0,0} & t_{2,0,0} & t_{3,0,0} \\ t_{0,0,1} & t_{1,0,1} & t_{2,0,1} & t_{3,0,1} \\ t_{0,0,2} & t_{1,0,2} & t_{2,0,2} & t_{3,0,2} \\ t_{0,0,3} & t_{1,0,3} & t_{2,0,3} & t_{3,0,3} \end{bmatrix} \begin{bmatrix} 1 \\ z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

for i = 1, ..., n

42/53

$$H_{y_1\sigma}^{\overline{A}_1,\overline{A}_2} = \begin{bmatrix} -0.0512 & 0.1287 & ,0.0528 & 0.0257 \\ 0.0315 & 0.0253 & -0.0661 & -0.0267 \\ -0.0353 & 0.04 & 0.0352 & -0.005 \\ 0.1331 & 0.0464 & -0.2197 & -0.0399 \end{bmatrix}$$

$$H_{y_2\sigma}^{\overline{A}_1,\overline{A}_2} = \begin{bmatrix} 0.0056 & -0.0149 & -0.0268 & -0.038\\ -0.0194 & 0.0284 & 0.0411 & 0.0359\\ 0.0256 & 0.0117 & -0.0288 & 0.0157\\ -0.1072 & 0.0347 & 0.1569 & 0.03 \end{bmatrix}$$

$$H_{\mathbf{y}_{3}\sigma}^{\overline{\mathbf{A}}_{1},\overline{\mathbf{A}}_{2}} = \begin{bmatrix} -0.0249 & -0.0101 & 0.0209 & -0.0268^{\circ} \\ 0.0231 & 0.0146 & -0.022 & 0.0225 \\ 0.0071 & 0.0131 & -0.002 & 0.0185 \\ 0.0261 & -0.0005 & -0.038 & -0.0036 \end{bmatrix}$$

43/53

	u _i	u 1	U 2	U 3
	a i,0	1	1	1
	a i,1	0.9535	-0.2373	-4.7475
	a i,2	-0.6526	-1.4691	-0.1451
	a i,3	1.6178	-0.2519	0.0074
	b i,0	1	1	1
Points =	b _{<i>i</i>,1}	0.5811	-6.9117	-6.4635
	b _{i,2}	-1.1104	4.897	-0.5801
	b i,3	-1.0127	-1.1502	-0.2973
	c i,0	1	1	1
	c _{i,1}	-0.8677	-1.3065	0.4138
	C i,2	-0.6216	0.5333	0.3747
	<mark>С</mark> і,3	-0.0957	-3.975	0.7576

	ω_1	0.0173
Weights =	ω_2	0.0055
	ω3	0.0035

COMPLETION OF HANKEL MATRICES

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

COMPLETION OF STRUCTURED MATRICES

Minimisation Problem

 $\begin{array}{ll} \underset{X}{\text{minimize}} & \operatorname{rank}(X) \\ \text{subject to} & \mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(Y) \end{array}$

Convex Relaxation Problem

 $\begin{array}{ll} \underset{X}{\text{minimize}} & \left\|X\right\|_{*}\\ \text{subject to} & \mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(Y) \end{array}$

For $\tau > 0$

minimize
$$\tau \|X\|_* + \frac{1}{2} \|X\|_F$$

subject to $\mathcal{P}_{\Omega}(X) = \mathcal{P}_{\Omega}(Y)$

▲日▼▲□▼▲回▼▲回▼ 通 めんの

Completion of structured matrices $_{\rm svt}$

Generalized Problem

$$\begin{array}{ll} \underset{X}{\text{minimize}} & \tau \left\| X \right\|_{*} + \frac{1}{2} \left\| X \right\|_{F} \\ \text{subject to} & \mathcal{A}(X) = b \end{array}$$

Usawa's Algorithm $b = \mathcal{A}(X_0), y^0 = b * k_0 * \delta$

$$\begin{cases} X^{k} = \mathbb{D}_{\tau}(\mathcal{A}^{*}(y^{k-1})) \\ y^{k} = y^{k-1} + \delta_{k}(b - \mathcal{A}(X^{k})) \end{cases}$$

Usawa's Algorithm

$$\begin{cases} \mathcal{A}(X, L) = [< L[i], X >]_{i=1}^{n} \\ \mathcal{A}^{*}(y, L) = \sum_{i=1}^{nops(L)} y[i] * L[i] \\ \mathcal{A}^{*}\mathcal{A} = \mathcal{P}_{\Omega} \\ \mathcal{A}(Y) = b \end{cases}$$

NEWTON INFLUENCE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�?

	u i	u _{i,}	0	u _{i,1}		u _{i,2}	
	u 1	1.0)	0.4404		0.5359	
Points =	u 2	1.0)	0.132	24	0.497	6
	U3	1.0)	0.6729		-0.0390	
	u 4	1.0)	0.143	37	0.041	0
	ω_1		112.805				
Waights -	ω_2	2 3	87.1916				
	- ω3	; 1	174.075				
	ω_4	F	25.928				

	u i	u i,0		u i,1		u i,2	
	u 1		1.0	0.4310		0.5427	
Points =	u 2	1.0		0.1359		0.5034	
-	U3	U ₃		0.3952		0.0094	
	<mark>u</mark> 4	1.0		0.0723		0.0579	
	ω_1	100		0.0			
Maighte -	ω_2	2	100	0.0			
	$-\omega_3$	3 100		0.0			
	ω_4	ŀ	100	0.0			

The error on the series before and after completion and Newton step is $1.6377e^{-14}$ 48/53

NEWTON METHOD

★ A : finite subset of
$$\mathbb{N}^n$$

★ $\omega_i, \xi_{i,j}$ are variables
★ $\equiv (\xi_{i,j})_{1 \le i \le r, 0 \le j \le n}$ set of variables / $\xi_{i,0} = \omega_i$ for $i = 1, ..., r$
★ $I = [1, r] \times [0, n] = \{(i, j) \mid 1 \le i \le r, 0 \le j \le n\}$ be the indices of the
variables and $N = (n + 1) r = |I|$
★ $\alpha \in A \ F_\alpha(\Xi) = \sum_{i=1} \omega_i \xi_i^\alpha - \tilde{\sigma}_\alpha$ be the error function for the moment
 $\tilde{\sigma}_\alpha$
★ $F(\Xi) = (F_\alpha(\Xi))_{\alpha \in A}$ the vector of these error functions

minimize the distance

$$E(\Xi) = \frac{1}{2} \sum_{\alpha \in A} |F_{\alpha}(\Xi)|^2 = \frac{1}{2} ||F(\Xi)||^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 • ⊙へ⊙

NEWTON METHOD

* $M(\Xi_i) = [\omega_i \xi_i^{\alpha}]_{\alpha \in A} \rightsquigarrow V(\Xi) = (\partial_{(i,j)} M(\Xi_i))_{(i,j) \in I}$ the $|A| \times N$ Vandermonde-like matrix. <u>Gradient</u> of $E(\Xi)$

$$\nabla E(\Xi) = (\langle \partial_{(i,j)} M(\Xi_i), F(\Xi) \rangle)_{(i,j) \in I} = V(\Xi)^T F(\Xi)$$

System

$$\nabla E(\Xi) = 0$$

Jacobien:

$$J_{\Xi}(\nabla E) = \langle \partial_{(i,j)} M(\Xi_j), \partial_{(i',j')} M(\Xi_{j'}) \rangle + (\langle \partial_{(i,j)} \partial_{(i',j')} M(\Xi_i), F(\Xi) \rangle)_{(i,j) \in I, (i',j') \in I}$$
$$= V(\Xi)^{\mathsf{T}} V(\Xi) + (\langle \partial_{(i,j)} \partial_{(i',j')} M(\Xi_i), F(\Xi) \rangle)_{(i,j) \in I, (i',j') \in I}.$$
$$\partial_{(i,j)} \partial_{(i',j')} M(\Xi_i) = 0 \text{ if } i \neq i'$$
Newton iteration:

$$\Xi_{n+1} = \Xi_n - J_{\Xi}(\nabla E)^{-1} \nabla E(\Xi_n).$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

NEWTON INFLUENCE ON SERIES'DECOMPOSITION

FIGURE: The evolution of the error in terms of the perturbation $\epsilon = 10^{(-e)}$ on the moments of the form $\sigma_{\alpha} + \epsilon(p_{\alpha} + iq_{\alpha})$ with amplitude *M* for different values of *r* with 5 Newton iterations.

CONCLUSIONS AND PERSPECTIVES

- \star Decomposition algorithm of the low rank the Hankel operator.
- \star A basis of \mathcal{A}_{σ} is computed from the Singular Value Decomposition of a sub-matrix.
- \star An explicit formula for the weights in terms of the eigenvectors of multiplication matrices.
- \star Rescaling technique to improve the numerical quality of the reconstruction of frequencies.
- ⋆ Newton iteration
- \star Singular Value Thresholding Algorithm for the completion of low rank Hankel matrix
- New technique which solves the numerical instability of the decomposition problem when the multiplicities of points are more than one.
- Other applications: the phylogenetic trees and image processing..

Merci Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

53/53