Effective Nullstellensatz and Generalized Bézout identities

André GALLIGO (U.C.A., INRIA, LJAD, France)

JNCF, CIRM February 2019.

Abstract

Among recent results on effective Hilbert's Nullstellensatz:

- Z. Jelonek (Inventiones mathematicae, 2005)
- C. d'Andrea, T. Krick and M. Sombra (A. S. ENS, 2013) "[DKS:13]".

I will present our curent work with Z. Jelonek, for finding effective versions of sharp elimination processes.

Hilbert Nullstellensatz

$$f_1,\ldots,f_s\in\mathbb{C}[x_1,\ldots,x_n]$$

do not share any root in \mathbb{C}^n if and only if there exist $g_1, \ldots, g_s \in \mathbb{C}[x_1, \ldots, x_n]$ such that:

$$1=g_1f_1+\ldots+g_sf_s.$$

- Assuming $deg(f_i) \le d$. If the degrees of the f_ig_i , is bounded by D, one finds the g_i by solving a linear system of size about sD^n .
- The coefficients of the g_i belong to the field of coefficients of the f_i , (e.g. \mathbb{Q}).

Brief History: Upper bound *D* for the degrees

- Hermann, 1923: $D = 2(2d)^{2^{n-1}}$.
- Brownawell, 1987: $D = n^2 d^n$, in characteristic 0.
- Caniglia-Galligo-Heintz, 1988: $D = d^{n(n+3)/2}$.
- Kollar, 1988: $D = max(d,3)^n$.
- Fitchas-Giusti-Smietanski, 1995: $D = d^{cn}$, for a constant c. (Using Straight-Line Programs).
- Sabia-Solerno, Sombra, 1995-97: Improvements for d = 2.
- Jelonek, 2005: $D = d^n$, for $s \le n$.
- C. d'Andrea, T. Krick and M. Sombra, 2013: Parametric and arithmetic versions.

Elimination and Bézout identities

Let \mathbb{K} be an algebraically closed field.

- When $V(f_1, ..., f_s)$ is of dimension 0 in \mathbb{K}^n , Z. Jelonek established in 2005, an elimination theorem. We generalize this result as follows.
- Assume $V(f_1, ..., f_s)$ has dimension q in \mathbb{K}^n ; $deg(f_1) \ge ... \ge deg(f_s)$.
- There exist $g_1, \ldots, g_s \in \mathbb{C}[x]$ and a non-zero polynomial $\phi(x_{n-q}, \ldots, x_n)$, such that:

$$\phi = g_1 f_1 + \ldots + g_s f_s;$$
 $deg(g_i f_i) \leq [deg(f_1) \ldots deg(f_{n-q-1})] deg(f_n).$

 We first prove it in generic coordinates, then we use a deformation argument.

Perron's theorem

Jelonek type approaches rely on generalizations of Perron's theorem. Here, we will use one proved in [DKS:13].

Let k be an arbitrary field and consider the groups of variables $t = \{t_1, \dots, t_o\}$ and $x = \{x_1, \dots, x_n\}$.

Generalized Perron Theorem:

Let
$$Q_1, ..., Q_{n+1} \in k[t, x] \setminus k[t]$$
. $d = (d_1, ..., d_{n+1}), h = (h_1, ..., h_{n+1})$. Then there exists

$$E = \sum_{a \in N^{n+1}} \alpha_a y^a \in k[t][y_1, \dots, y_{n+1}] \setminus \{0\}$$

satisfying $E(Q_1, ..., Q_{n+1}) = 0$ and such that, for all $a \in supp(E)$, we have

1)
$$< d, a > \le (\prod_{i=1}^{n+1} d_i).$$

2)
$$deg(\alpha_a) + \langle h, a \rangle \leq (\prod_{j=1}^{n+1} d_j)(\sum_{l=1}^{n+1} \frac{h_l}{d_l}).$$

Main Construction

$$I = (f_1, \dots, f_s) \subset \mathbb{K}[x_1, \dots, x_n]$$
 is an ideal, of dimension $q < n$.

• Take $F_{n-q} = f_s$ and $F_i = \sum_{j=i}^s \alpha_{ij} f_j$ for i = 1, ..., n-q-1, where α_{ij} are sufficiently general. Take $J = (F_1, ..., F_{n-q})$, deg $F_{n-q} = d_s$, deg $F_i = d_i$ for $i \le n-q-1$, dimV(J) = q.

•

$$\Phi: \mathbb{K}^n \times \mathbb{K} \ni (x, z) \to (F_1(x)z, \dots, F_{n-q}(x)z, x) \in \mathbb{K}^{n-q} \times \mathbb{K}^n$$

is a (non-closed) embedding outside the set $V(J) \times \mathbb{K}$.

- $\Gamma = \operatorname{cl}(\Phi(\mathbb{K}^n \times \mathbb{K}))$ is an affine sub-variety of dimension n+1 of \mathbb{K}^{2n-q} . Let $\pi : \Gamma \to \mathbb{K}^{n+1}$ be a generic projection and define $\Psi := \pi \circ \Phi$.
- In the generic coordinates X, we get $\Psi(X, z) =$

$$(zF_1 + \ell_0(x), zF_2 + X_1, \dots, zF_{n-q} + X_{n-q-1}, X_{n-q}, \dots, X_n).$$

Continued

By this genericity, the image of the projection

$$\pi': V(J) \ni X \mapsto (X_{n-q}, \ldots, X_n) \in \mathbb{K}^{q+1}$$

is an hypersurface S, let $\phi'(X_{n-q},\ldots,X_n)=0$ describe S.

- $\Psi = (\Psi_1, \dots, \Psi_{n-q}, X_{n-q}, \dots, X_n) : \mathbb{K}^n \times \mathbb{K} \to \mathbb{K}^{n+1}$ is finite outside the set $V(J) \times \mathbb{K}$.
- Hence, the set of non-properness of Ψ is contained in

$$S = \{T = (T_1, \dots, T_{n-q}, X_{n-q}, \dots, X_n) \in \mathbb{K}^{n+1} : \phi'(X) = 0\}.$$

- Now, we apply to Ψ , Perron's theorem with $\mathbb{L} = \mathbb{K}(z)$.
- There exists a non-zero polynomial $W(T_1, \ldots, T_{n+1}) \in \mathbb{L}[T_1, \ldots, T_{n+1}]$ such that $W(\Psi_1, \ldots, \Psi_{n+1}) = 0$ with the expected degree inequalities.

End of proof

- There is a non-zero minimal poynomial $\tilde{W} \in \mathbb{K}[T_1, \dots, T_{n+1}, Y]$ such that (a) $\tilde{W}(\Psi_1(x, z), \dots, \Psi_{n+1}(x, z), z) = 0$, (b) $\deg_T \tilde{W}(T_1^{d_1}, T_2^{d_2}, \dots, T_{n-q}^{d_{n-q}}, T_{n-q+1}, \dots, T_{n+1}, Y) \le d_s \prod_{j=1}^{n-q-1} d_j$,
- The Y-leading coefficient $b_0(T)$ of \tilde{W} satisfies $\{T:b_0(T)=0\}\subset S$, hence $b_0(T)$ depends only on coordinates $T_{n-q+i+1}=X_{n-q+i}$, for $0\leq i\leq q$.
- We now develop (a) in z and get E(X, z) = 0. The z-leading coefficient B(X) in E, is obtained either from b₀(X_{n-q},..., X_n) or from terms corresponding to products, containing at least one of T_i, i < n, hence containing at least one of F_i.
- The Bézout identity follows from the fact that this coefficient B(X) vanishes identically. □

Getting rid of the coordinates change

- We first establish a parametric version: We replace the field \mathbb{K} by the algebraic closure of the fraction field of k[t], where k is an infinite field, following [DKS:13].
- Then, we use the following generic change of coordinates and its inverse.

$$X_i = x_i + t \sum_{j=i+1}^n a_{i,j} x_j$$
; $x_i = X_i + t \sum_{j=i+1}^n b_{i,j}(t) X_j$.

- Set $\bar{F}_j(X,t) = F_j(X)$. Notice that t divises $\bar{F}_j(X,t) F_j(X)$.
- After simpliflications, we have,

$$b_0(X_{n-q},...,X_n,t) = \sum_{i=1}^{n-q} G_j(X,t)\bar{F}_j(X,t).$$

Continuation

- We cannot exclude the possibility of a remaining factor t^p in the left hand, side with p > 0.
 So we need to perform several reduction steps.
- Let $b_0(X, t) = t^p(\phi(x) + t\phi_1(x, t))$. Setting t = 0, we obtain a non trivial relation $0 = \sum_{j=1}^s G_j(x, 0) F_j(x)$.
- Apply a change of coordinates to this relation to get $0 = \sum_{j=1}^{s} \bar{H}_{j}(X, t)\bar{F}_{j}(X, t)$.
- The x-degree of $G_j(x,0)$ is bounded by the X-degree of $G_j(X,t)$, and is equal to the X-degree of $\bar{H}_j(X,t)$.
- Now, $\sum_{j=1}^{n-q} (G_j(X,t) \bar{H}_j(X,t)) \bar{F}_j(X,t)$ vanishes for t=0, hence admits a factor t. We simplify the two sides of the previous equality by t, so $t^{p-1}(\phi(x) + t\phi_1(x,t)) = \sum_{j=1}^{s} (G_j(X,t) - \bar{H}_j(X,t)) \bar{F}_j(X,t)$.