
1/21

Motivations Reduction operators Confluence and completion Conclusion

Reduction operators
and completion of linear rewriting systems

Cyrille Chenavier

INRIA Lille - Nord Europe

Valse team

February 8, 2019

INRIA Lille - Nord Europe Reduction operators and completion of linear rewriting systems



2/21

Motivations Reduction operators Confluence and completion Conclusion

Plan

I. Motivations
. Computational problems in algebra and rewriting theory
. Termination, confluence and Gröbner bases

II. Reduction operators
. Reduction operators and linear rewriting systems
. Lattice structure of reduction operators

III. Confluence and completion
. Lattice formulation of confluence
. Lattice formulation of completion

IV. Conclusion and perspectives

INRIA Lille - Nord Europe Reduction operators and completion of linear rewriting systems



3/21

Motivations Reduction operators Confluence and completion Conclusion

Plan

I. Motivations

INRIA Lille - Nord Europe Reduction operators and completion of linear rewriting systems



4/21

Motivations Reduction operators Confluence and completion Conclusion

Computational problems in algebra

I Computational problems:

. Our running example: how to compute a linear basis of a K-algebra A?

. Development of effective methods: in algebraic geometry, homological algebra,
algebraic combinatorics, for polynomial/functional equations, cryptography, · · ·

I These problems concern various algebraic structures:

. (associative, commutative, Lie) algebras, rings of functional operators,

. operads, PROS, monoidal categories,

. · · ·

I Rewriting method: present algebraic structures by generators and oriented relations.

. Notion of normal forms.

. Procedures for computing normal forms.
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Example

I A = K[x , y ] the polynomial algebra over two indeterminates.

. As an associative algebra: 2 generators (x and y) and 1 relation (yx −→ xy).

. Monomials over which we cannot apply yx −→ xy are called normal forms: xnym.

. In this case: A = K
{
monomials in normal forms

}
.

. Linear decompositions: obtained by applying yx −→ xy as long as it is possible.

I A an algebra presented by generators and oriented relations.

. Let NF =
{
monomials in normal forms form

}
.

. Is NF a basis of A?

. That is: is NF a generating family? is NF a free family?
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Termination

I A = K〈x | x −→ xx〉.

. A = K1 ⊕ Kx and NF = {1}.

. In general, NF is not a generating family of A!

Definition. Let A be an algebra. A presentation of A is said to be terminating if there
is no infinite sequence of reductions

f1 −→ f2 −→ · · · −→ fn −→ fn+1 −→ · · ·

I A an algebra admitting a terminating presentation.

. Every a ∈ A is equal to a normal form.

I When the presentation of A is terminating, NF is a generating family of A!
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Confluence

I A = K〈x , y | yy −→ yx〉.
. yxy , yxx ∈ NF and yxy = yxx in A

:

yyy

((vv
yxy yyx

vv
yxx

Definition. Let A be an algebra. A presentation of A is said to be confluent if

f1 ∗

��
f

∗
22

∗ ,,

g

f2 ∗

??

I When the presentation of A is confluent and terminating, NF is a linear basis of A!
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Gröbner Bases

I Gröbner bases appear in

. Lie algebras [Shirshov 1962],

. Commutative algebras [Buchberger 1965],

. Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],

. Operads [Dotsenko-Khoroshkin 2010],

. · · ·

I The relations are oriented w.r.t a monomial order <:

. If f = lm (f )− r(f ), then lm (f ) −→ r(f ).

. A monomial order ensures termination.

I A = K〈X | R〉, where the elements of R are oriented w.r.t a monomial order.

. R is called a Gröbner basis if it induces a confluent presentation.
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Objectives

I Representations of rewriting systems by reduction operators:

. Formalisation of noncommutative Gröbner bases [Bergman, 1978],

. Applications to Koszul duality [Berger 1998].

I Objective: extend the functional approach.

. We introduce a lattice interpretation of the confluence property.

. We deduce a lattice interpretation of the completion procedure.

. The functional approach concerns general linear rewriting systems!
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Plan

II. Reduction operators

INRIA Lille - Nord Europe Reduction operators and completion of linear rewriting systems



11/21

Motivations Reduction operators Confluence and completion Conclusion

Definition

I (G , <) a fixed well-ordered set.

. For algebras: G is a set of monomials and < is a monomial order.

. In our examples: (G, <) is a totally ordered finite set.

Notations. ∀v , v ′ ∈ KG

. lm (v): the greatest basis element occurring in the decomposition of v .

. We let v < v ′ if lm (v) < lm (v ′).

Definition. An endomorphism T of KG is a reduction operator relative to (G , <) if

. T is a projector,

. ∀g ∈ G , we have T (g) ≤ g .
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Example

I (G , <) =
{
g1 < g2 < g3 < g4

}
,

T1 =

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

 and T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0

 .

I v = (λ1, λ2, λ3, λ4) ∈ KG .

. T1 reduces v as follows

v −→
T1

T1(v) = (λ1 + λ2, 0, λ3 + λ4, 0) .

. T2 reduces v as follows

v −→
T2

T2(v) = (λ1, λ2 + λ4, λ3, 0) .
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Lattice Structure

Proposition. The map

ker : RO (G , <) −→
{
subspaces of KG

}
,

T 7−→ ker(T )

is a bijection.

Notation. ker−1 :
{
subspaces of KG

}
−→ RO (G , <) the inverse of ker.

Lattice structure.
(
RO (G , <) , �, ∧, ∨

)
is a lattice where

. T1 � T2 if ker (T2) ⊆ ker (T1).

. T1 ∧ T2 = ker−1 (ker(T1) + ker(T2)).

. T1 ∨ T2 = ker−1 (ker(T1) ∩ ker(T2)).
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III. Confluence and completion
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Obstructions to confluence
I ∀T ∈ RO (G , <), we let NF (T ) = {g | T (g) = g}.

I Given P = (T1, T2) ⊂ RO (G , <), we have

NF (T1 ∧ T2) ⊆ NF (T1) ∩ NF (T2) .

I In general, the inclusion is strict:

. T1 = ker−1 (K{g2 − g1, g4 − g3}) and T2 = ker−1 (K{g4 − g2}).

. T1 ∧ T2 = ker−1 (K{g4 − g1, g3 − g1, g2 − g1}).

. g3 ∈ NF (T1) ∩ NF (T2) and g3 /∈ NF (T1 ∧ T2).

Remark. The obstruction to confluence is @ g3 −→ g1:

g4
T2

''
T1

wwg3 g2

T1wwg1
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Confluence

I Let F ⊂ RO (G , <).

∧F = ker−1
(∑

T∈F

ker (T )

)
and NF (F ) =

⋂
T∈F

NF (T ) .

Lemma. NF (∧F ) ⊆ NF (F ).

Notation. ObsF = NF (F ) \ NF (∧F ).

Definition. F is said to be confluent if ObsF = ∅.

Proposition. F is confluent if and only if it is so for

−→
F

=
⋃

T∈F

−→
T

.
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Completion

I P = (T1,T2), where

T1 =

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

 and T2 =

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0

 .

I We complete P with

?

g4
T2

''
T1

wwg3

CP ''

g2

T1wwg1

I Formally

CP =

1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

 .
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Lattice description of the completion procedure

I Let F ⊂ RO (G , <).

I F is completed by CF ∈ RO (G , <), defined as follows

CF (g) =
{
∧ F (g), if g ∈ ObsF

g , otherwise.

I What is the procedure for computing CF?

. Compute ∧F by “Gaussian elimination”.

. For every g such that g /∈ NF (∧F ) and g ∈ NF (F ): CF (g) = ∧F (g).

. For every all other g ∈ G: CF (g) = g .

Theorem. Letting ∨F = ker−1 (NF (F )), we have:

CF = (∧F ) ∨
(
∨F
)
.
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Summary and perspectives

I Summary of results (arXiv:1605.00174):

. We equipped RO (G, <) with a lattice structure.

. We introduced lattice formulations of confluence and completion.

I This lattice approach provides applications to higher-dimensional algebra:

. Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).

. Procedure for computing syzygies for linear rewriting systems (arXiv:1708.08709).

I Further works:

. Reduction operators for left modules.

. Applications to algebraic study of linear functionnal systems (e.g. Ore extensions).
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