Motivations	Reduction operators	Confluence and completion	Conclusion

Reduction operators

and completion of linear rewriting systems

Cyrille Chenavier

INRIA Lille - Nord Europe

Valse team

February 8, 2019

Motivations	Reduction operators	Confluence and completion	Conclusion
DI			

I. Motivations

- > Computational problems in algebra and rewriting theory
- > Termination, confluence and Gröbner bases

II. Reduction operators

- Reduction operators and linear rewriting systems
- Lattice structure of reduction operators

III. Confluence and completion

- Lattice formulation of confluence
- Lattice formulation of completion

IV. Conclusion and perspectives

Motivations	Reduction operators	Confluence and completion	Conclusion
000000			
Plan			

I. Motivations

Motivations	Reduction operators	Confluence and completion	Conclusion
000000			
Computational p	problems in algebra		

- Computational problems:
 - ▷ Our running example: how to compute a linear basis of a K-algebra A?

Motivations ○●○○○○○	Reduction operators	Confluence and completion	Conclusion
Computational pro	blems in algebra		

- Computational problems:
 - ▷ Our running example: how to compute a linear basis of a K-algebra A?
 - Development of effective methods: in algebraic geometry, homological algebra, algebraic combinatorics, for polynomial/functional equations, cryptography, ···

Motivations ○●○○○○○	Reduction operators	Confluence and completion	Conclusion
Computational pro	blems in algebra		

- Computational problems:
 - \triangleright Our running example: how to compute a linear basis of a \mathbb{K} -algebra A?
 - Development of effective methods: in algebraic geometry, homological algebra, algebraic combinatorics, for polynomial/functional equations, cryptography, ···
- These problems concern various algebraic structures:
 - ▷ (associative, commutative, Lie) algebras, rings of functional operators,
 - > operads, PROS, monoidal categories,

Motivations ○●○○○○○	Reduction operators	Confluence and completion	Conclusion
Computational pro	blems in algebra		

- Computational problems:
 - \triangleright Our running example: how to compute a linear basis of a \mathbb{K} -algebra A?
 - Development of effective methods: in algebraic geometry, homological algebra, algebraic combinatorics, for polynomial/functional equations, cryptography, ···
- These problems concern various algebraic structures:
 - ▷ (associative, commutative, Lie) algebras, rings of functional operators,
 - > operads, PROS, monoidal categories,

Rewriting method: present algebraic structures by generators and oriented relations.

Motivations ○●○○○○○	Reduction operators	Confluence and completion	Conclusion
Computational pro	blems in algebra		

- Computational problems:
 - \triangleright Our running example: how to compute a linear basis of a \mathbb{K} -algebra A?
 - Development of effective methods: in algebraic geometry, homological algebra, algebraic combinatorics, for polynomial/functional equations, cryptography, ···
- These problems concern various algebraic structures:
 - ▷ (associative, commutative, Lie) algebras, rings of functional operators,
 - > operads, PROS, monoidal categories,
 - $\triangleright \cdots$
- Rewriting method: present algebraic structures by generators and oriented relations.
 - ▶ Notion of normal forms.
 - Procedures for computing normal forms.

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

- $A = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - ▷ As an associative algebra: 2 generators (x and y) and 1 relation ($yx \rightarrow xy$).

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

- $A = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - ▷ As an associative algebra: 2 generators (x and y) and 1 relation ($yx \rightarrow xy$).
 - ▷ Monomials over which we cannot apply $yx \longrightarrow xy$ are called **normal forms**: $x^n y^m$.

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			
Lxample			

- $\mathbf{A} = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - ▷ As an associative algebra: 2 generators (x and y) and 1 relation ($yx \rightarrow xy$).
 - ▷ Monomials over which we cannot apply $yx \longrightarrow xy$ are called normal forms: $x^n y^m$.
 - ▷ In this case: $\mathbf{A} = \mathbb{K} \{ \text{monomials in normal forms} \}$.

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			
Lxample			

- $\mathbf{A} = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - ▷ As an associative algebra: 2 generators (x and y) and 1 relation ($yx \rightarrow xy$).
 - ▷ Monomials over which we cannot apply $yx \longrightarrow xy$ are called normal forms: $x^n y^m$.
 - ▷ In this case: $\mathbf{A} = \mathbb{K} \{ \text{monomials in normal forms} \}$.
 - \triangleright Linear decompositions: obtained by applying $yx \longrightarrow xy$ as long as it is possible.

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

- $\mathbf{A} = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - \triangleright As an associative algebra: 2 generators (x and y) and 1 relation (yx \longrightarrow xy).
 - ▷ Monomials over which we cannot apply $yx \longrightarrow xy$ are called normal forms: $x^n y^m$.
 - ▷ In this case: $\mathbf{A} = \mathbb{K} \{ \text{monomials in normal forms} \}$.
 - \triangleright Linear decompositions: obtained by applying $yx \longrightarrow xy$ as long as it is possible.

A an algebra presented by generators and oriented relations.

- ▷ Let NF = {monomials in normal forms form}.
- ▶ Is NF a basis of A?

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

- $\mathbf{A} = \mathbb{K}[x, y]$ the polynomial algebra over two indeterminates.
 - \triangleright As an associative algebra: 2 generators (x and y) and 1 relation (yx \longrightarrow xy).
 - ▷ Monomials over which we cannot apply $yx \longrightarrow xy$ are called normal forms: $x^n y^m$.
 - ▷ In this case: $\mathbf{A} = \mathbb{K} \{ \text{monomials in normal forms} \}$.
 - \triangleright Linear decompositions: obtained by applying $yx \longrightarrow xy$ as long as it is possible.

A an algebra presented by generators and oriented relations.

- \triangleright Let NF = {monomials in normal forms form}.
- ▶ Is NF a basis of **A**?
- ▷ That is: is NF a generating family? is NF a free family?

Motivations	Reduction operators	Confluence and completion	Conclusion
000000	00000	00000	00
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

Motivations	Reduction operators	Confluence and completion	Conclusion
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

$$\triangleright \mathbf{A} = \mathbb{K}\mathbf{1} \oplus \mathbb{K}\mathbf{x} \text{ and } \mathsf{NF} = \{\mathbf{1}\}.$$

Motivations ○○○●○○○	Reduction operators	Confluence and completion	Conclusion
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

$$\triangleright \mathbf{A} = \mathbb{K}\mathbf{1} \oplus \mathbb{K}x \text{ and } \mathsf{NF} = \{\mathbf{1}\}.$$

Motivations	Reduction operators	Confluence and completion	Conclusion
000000			
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

$$\triangleright \mathbf{A} = \mathbb{K}\mathbf{1} \oplus \mathbb{K}x \text{ and } \mathsf{NF} = \{\mathbf{1}\}.$$

Definition. Let **A** be an algebra. A presentation of **A** is said to be **terminating** if there is no infinite sequence of reductions

$$f_1 \longrightarrow f_2 \longrightarrow \cdots \longrightarrow f_n \longrightarrow f_{n+1} \longrightarrow \cdots$$

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000			
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

$$\triangleright \mathbf{A} = \mathbb{K}\mathbf{1} \oplus \mathbb{K}x \text{ and } \mathsf{NF} = \{\mathbf{1}\}.$$

Definition. Let **A** be an algebra. A presentation of **A** is said to be terminating if there is no infinite sequence of reductions

$$f_1 \longrightarrow f_2 \longrightarrow \cdots \longrightarrow f_n \longrightarrow f_{n+1} \longrightarrow \cdots$$

A an algebra admitting a terminating presentation.

 \triangleright Every $a \in \mathbf{A}$ is equal to a normal form.

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000			
Termination			

$$\blacktriangleright \mathbf{A} = \mathbb{K} \langle x \mid x \longrightarrow xx \rangle.$$

$$\triangleright \mathbf{A} = \mathbb{K}\mathbf{1} \oplus \mathbb{K}x \text{ and } \mathsf{NF} = \{\mathbf{1}\}.$$

Definition. Let **A** be an algebra. A presentation of **A** is said to be terminating if there is no infinite sequence of reductions

$$f_1 \longrightarrow f_2 \longrightarrow \cdots \longrightarrow f_n \longrightarrow f_{n+1} \longrightarrow \cdots$$

A an algebra admitting a terminating presentation.

 \triangleright Every $a \in \mathbf{A}$ is equal to a normal form.

When the presentation of A is terminating, NF is a generating family of A!

Motivations	Reduction operators	Confluence and completion	Conclusion
Confluence			

►
$$\mathbf{A} = \mathbb{K} \langle x, y | yy \longrightarrow yx \rangle$$
.
▷ $yxy, yxx \in \mathsf{NF} \text{ and } yxy = yxx \text{ in } \mathbf{A}$

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000			
Confluence			

►
$$\mathbf{A} = \mathbb{K} \langle x, y | yy \longrightarrow yx \rangle.$$

▷ $yxy, yxx \in NF$ and $yxy = yxx$ in \mathbf{A} :

Motivations	Reduction operators	Confluence and completion	Conclusion
Confluence			

►
$$\mathbf{A} = \mathbb{K}\langle x, y \mid yy \longrightarrow yx \rangle.$$

► $yxy, yxx \in \mathsf{NF} \text{ and } yxy = yxx \text{ in } \mathbf{A}:$
 yyy
 yxy
 yyy
 yyy
 yyy

Definition. Let A be an algebra. A presentation of A is said to be confluent if

Motivations ○○○○●○○	Reduction operators	Confluence and completion	Conclusion
Confluence			

►
$$\mathbf{A} = \mathbb{K}\langle x, y \mid yy \longrightarrow yx \rangle.$$

► $yxy, yxx \in \mathsf{NF} \text{ and } yxy = yxx \text{ in } \mathbf{A}:$
 yyy
 yxy
 yyy
 yyy
 yyy

Definition. Let A be an algebra. A presentation of A is said to be confluent if

When the presentation of **A** is confluent and terminating, NF is a linear basis of **A**!

Motivations ○○○○○●○	Reduction operators	Confluence and completion	Conclusion
Gröbner Bases			

- Gröbner bases appear in
 - Lie algebras [Shirshov 1962],
 - Commutative algebras [Buchberger 1965],
 - Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],
 - Operads [Dotsenko-Khoroshkin 2010],

Motivations ○○○○○●○	Reduction operators	Confluence and completion	Conclusion
Gröbner Bases			

- Gröbner bases appear in
 - ▷ Lie algebras [Shirshov 1962],
 - Commutative algebras [Buchberger 1965],
 - ▷ Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],
 - Operads [Dotsenko-Khoroshkin 2010],

- The relations are oriented w.r.t a monomial order <:</p>
 - ▷ If f = Im(f) r(f), then $\text{Im}(f) \longrightarrow r(f)$.
 - > A monomial order ensures termination.

Motivations	Reduction operators	Confluence and completion	Conclusion
Gröbner Bases			

- Gröbner bases appear in
 - ▷ Lie algebras [Shirshov 1962],
 - Commutative algebras [Buchberger 1965],
 - Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],
 - Operads [Dotsenko-Khoroshkin 2010],

- The relations are oriented w.r.t a monomial order <:</p>
 - ▷ If $f = \operatorname{Im}(f) r(f)$, then $\operatorname{Im}(f) \longrightarrow r(f)$.
 - > A monomial order ensures termination.

A = $\mathbb{K}\langle X \mid R \rangle$, where the elements of R are oriented w.r.t a monomial order.

 \triangleright *R* is called a **Gröbner basis** if it induces a confluent presentation.

Motivations ○○○○○○●	Reduction operators	Confluence and completion	Conclusion
Objectives			

- Representations of rewriting systems by reduction operators:
 - ▷ Formalisation of noncommutative Gröbner bases [Bergman, 1978],
 - > Applications to Koszul duality [Berger 1998].

Motivations ○○○○○○●	Reduction operators	Confluence and completion	Conclusion
Objectives			

- Representations of rewriting systems by reduction operators:
 - ▷ Formalisation of noncommutative Gröbner bases [Bergman, 1978],
 - > Applications to Koszul duality [Berger 1998].
- Objective: extend the functional approach.
 - > We introduce a lattice interpretation of the confluence property.
 - ▷ We deduce a lattice interpretation of the completion procedure.

Motivations ○○○○○○●	Reduction operators	Confluence and completion	Conclusion
Objectives			

- Representations of rewriting systems by reduction operators:
 - ▷ Formalisation of noncommutative Gröbner bases [Bergman, 1978],
 - > Applications to Koszul duality [Berger 1998].
- Objective: extend the functional approach.
 - > We introduce a lattice interpretation of the confluence property.
 - ▷ We deduce a lattice interpretation of the completion procedure.
 - > The functional approach concerns general linear rewriting systems!

Motivations	Reduction operators	Confluence and completion	Conclusion
Plan			

II. Reduction operators

Motivations	Reduction operators	Confluence and completion	Conclusion
Definition			

• (G, <) a fixed well-ordered set.

Motivations	Reduction operators	Confluence and completion	Conclusion
Definition			

- (G, <) a fixed well-ordered set.
 - \triangleright For algebras: G is a set of monomials and < is a monomial order.

Motivations	Reduction operators	Confluence and completion	Conclusion
Definition			

- (G, <) a fixed well-ordered set.
 - \triangleright For algebras: G is a set of monomials and < is a monomial order.
 - ▷ In our examples: (G, <) is a totally ordered finite set.

Motivations	Reduction operators	Confluence and completion	Conclusion
Definition			

- (G, <) a fixed well-ordered set.
 - \triangleright For algebras: G is a set of monomials and < is a monomial order.
 - ▷ In our examples: (G, <) is a totally ordered finite set.

Notations. $\forall v, v' \in \mathbb{K}G$

- \triangleright Im (v): the greatest basis element occurring in the decomposition of v.
- $\triangleright \text{ We let } v < v' \text{ if } \operatorname{Im}(v) < \operatorname{Im}(v').$

Motivations	Reduction operators	Confluence and completion	Conclusion
Definition			

• (G, <) a fixed well-ordered set.

- \triangleright For algebras: G is a set of monomials and < is a monomial order.
- ▷ In our examples: (G, <) is a totally ordered finite set.

Notations. $\forall v, v' \in \mathbb{K}G$

- \triangleright Im (v): the greatest basis element occurring in the decomposition of v.
- $\triangleright \text{ We let } v < v' \text{ if } \operatorname{Im}(v) < \operatorname{Im}(v').$

Definition. An endomorphism T of $\mathbb{K}G$ is a reduction operator relative to (G, <) if

- \triangleright T is a projector,
- $\triangleright \forall g \in G$, we have $T(g) \leq g$.
| Motivations | Reduction operators | Confluence and completion | Conclusion |
|-------------|---------------------|---------------------------|------------|
| Example | | | |

$$\blacktriangleright (G, <) = \{g_1 < g_2 < g_3 < g_4\},\$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

$$\blacktriangleright (G, <) = \{g_1 < g_2 < g_3 < g_4\},\$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\triangleright$$
 $v = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{K}G.$

Motivations	Reduction operators	Confluence and completion	Conclusion
Example			

$$\blacktriangleright (G, <) = \{g_1 < g_2 < g_3 < g_4\},\$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\triangleright v = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{K}G.$$

 \triangleright T_1 reduces v as follows

$$v \xrightarrow[T_1]{} T_1(v) = (\lambda_1 + \lambda_2, 0, \lambda_3 + \lambda_4, 0).$$

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000	00000	00000	00
Example			

$$\blacktriangleright (G, <) = \{g_1 < g_2 < g_3 < g_4\},\$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\triangleright v = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{K}G.$$

 \triangleright T_1 reduces v as follows

$$v \xrightarrow[]{T_1} T_1(v) = (\lambda_1 + \lambda_2, 0, \lambda_3 + \lambda_4, 0).$$

 \triangleright T_2 reduces v as follows

$$v \xrightarrow{T_2} T_2(v) = (\lambda_1, \lambda_2 + \lambda_4, \lambda_3, 0).$$

Motivations	Reduction operators	Confluence and completion	Conclusion
Lattice Structure			

Proposition. The map

$$\mathsf{ker} \colon \mathsf{RO}(G, <) \longrightarrow \Big\{ \mathsf{subspaces of } \mathbb{K}G \Big\},$$
$$T \longmapsto \mathsf{ker}(T)$$

is a bijection.

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		
Lattice Structure			

Proposition. The map

$$\begin{aligned} & \mathsf{ker} \colon \mathbf{RO}\left(G, \ <\right) \longrightarrow \Big\{\mathsf{subspaces of } \mathbb{K}G\Big\}, \\ & \mathcal{T} \longmapsto \mathsf{ker}(\mathcal{T}) \end{aligned}$$

is a bijection.

Notation. ker⁻¹ : {subspaces of $\mathbb{K}G$ } \longrightarrow RO (G, <) the inverse of ker.

Lattice structure. (RO (G, <), \preceq , \land , \lor) is a lattice where

 $\triangleright T_1 \preceq T_2 \text{ if } \ker(T_2) \subseteq \ker(T_1).$

$$\triangleright \ T_1 \wedge T_2 = \ker^{-1} (\ker(T_1) + \ker(T_2)).$$

$$\triangleright T_1 \lor T_2 = \ker^{-1} \left(\ker(T_1) \cap \ker(T_2) \right)$$

Motivations 0000000	Reduction operators ○○○○●	Confluence and completion	Conclusion
Example			

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Motivations	Reduction operators ○○○○●	Confluence and completion	Conclusion
Example			

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

• By definition, ker $(T_1 \wedge T_2) = \text{ker} (T_1) + \text{ker} (T_2)$

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		
Evample			

•
$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

 $T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ and $T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$

• By definition, $\ker (T_1 \wedge T_2) = \ker (T_1) + \ker (T_2)$, so that

 $\triangleright \ \ker (T_1 \wedge T_2) = \mathbb{K} \{ g_2 - g_1 \} + \mathbb{K} \{ g_4 - g_3 \}$

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		
E			

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

▶ By definition, ker $(T_1 \land T_2) = \text{ker} (T_1) + \text{ker} (T_2)$, so that

 $\triangleright \ \, \mathsf{ker}\,(\, \mathcal{T}_1 \wedge \, \mathcal{T}_2) \ = \ \, \mathbb{K}\{g_2 - g_1\} \ + \ \, \mathbb{K}\{g_4 - g_3\} \ + \ \, \mathbb{K}\{g_4 - g_2\}.$

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

▶ By definition, ker $(T_1 \land T_2) = \text{ker} (T_1) + \text{ker} (T_2)$, so that

$$\triangleright \ \, \mathsf{ker}\,(\,T_1\wedge\,T_2) \ = \ \, \mathbb{K}\{g_2-g_1\} \ + \ \, \mathbb{K}\{g_4-g_3\} \ + \ \, \mathbb{K}\{g_4-g_2\}.$$

 \triangleright Hence, ker ($T_1 \wedge T_2$) is spanned by the rows of the matrix

$$egin{pmatrix} -1 & 1 & 0 & 0 \ 0 & 0 & -1 & 1 \ 0 & -1 & 0 & 1 \end{pmatrix}$$
 .

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		
-			
Evampla			

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

▶ By definition, ker $(T_1 \land T_2) = \text{ker} (T_1) + \text{ker} (T_2)$, so that

$$\Rightarrow \ker (T_1 \wedge T_2) = \mathbb{K} \{g_2 - g_1\} + \mathbb{K} \{g_4 - g_3\} + \mathbb{K} \{g_4 - g_2\}.$$

 \triangleright Hence, by Gaussian elimination, ker $(T_1 \land T_2)$ is spanned by the rows of the matrix

$$\begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

Motivations	Reduction operators	Confluence and completion	Conclusion
	00000		
Evampla			

$$(G, <) = \{g_1 < g_2 < g_3 < g_4\},$$

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

▶ By definition, ker $(T_1 \land T_2) = \text{ker} (T_1) + \text{ker} (T_2)$, so that

> ker
$$(T_1 \wedge T_2) = \mathbb{K}\{g_2 - g_1\} + \mathbb{K}\{g_4 - g_3\} + \mathbb{K}\{g_4 - g_2\}.$$

 \triangleright Hence, by Gaussian elimination, ker ($T_1 \wedge T_2$) is spanned by the rows of the matrix

$$\begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

We deduce

.

Motivations 0000000	Reduction operators	Confluence and completion	Conclusion
Plan			

III. Confluence and completion

Motivations	Reduction operators	Confluence and completion	Conclusion			
		0000				
Obstructions	Obstructions to confluence					

 $\blacktriangleright \ \forall T \in \mathbf{RO}(G, <), \text{ we let } \mathsf{NF}(T) = \{g \mid T(g) = g\}.$

Motivations 0000000	Reduction operators	Confluence and completion ○●○○○	Conclusion
Obstructions	to confluence		

$$\blacktriangleright \forall T \in \mathbf{RO}(G, <), \text{ we let NF}(T) = \{g \mid T(g) = g\}.$$

 $\mathsf{NF}(T_1 \wedge T_2) \subseteq \mathsf{NF}(T_1) \cap \mathsf{NF}(T_2).$

Motivations 0000000	Reduction operators	Confluence and completion ○●○○○	Conclusion
Obstructions to co	nfluence		
$\blacktriangleright \forall T \in \mathbf{RO}(G, <)$), we let NF $(T) = \{g \mid T\}$	$\overline{(g)} = g\}.$	

• Given $P = (T_1, T_2) \subset \mathbf{RO}(G, <)$, we have

 $\mathsf{NF}(T_1 \wedge T_2) \subseteq \mathsf{NF}(T_1) \cap \mathsf{NF}(T_2).$

In general, the inclusion is strict

Motivations 0000000	Reduction operators	Confluence and completion	Conclusion
Obstructions t	o confluence		

$$\forall T \in \mathbf{RO}(G, <), \text{ we let } \mathsf{NF}(T) = \{g \mid T(g) = g\}.$$

 $NF(T_1 \wedge T_2) \subseteq NF(T_1) \cap NF(T_2).$

In general, the inclusion is strict:

▷ $T_1 = \ker^{-1} (\mathbb{K} \{ g_2 - g_1, g_4 - g_3 \})$ and $T_2 = \ker^{-1} (\mathbb{K} \{ g_4 - g_2 \})$.

Motivations	Reduction operators	Confluence and completion	Conclusion
Obstructions f	to confluence		

$$\forall T \in \mathsf{RO}(G, <), \text{ we let } \mathsf{NF}(T) = \{g \mid T(g) = g\}.$$

 $NF(T_1 \wedge T_2) \subseteq NF(T_1) \cap NF(T_2).$

In general, the inclusion is strict:

▷ $T_1 = \ker^{-1} (\mathbb{K} \{ g_2 - g_1, g_4 - g_3 \})$ and $T_2 = \ker^{-1} (\mathbb{K} \{ g_4 - g_2 \})$.

 $\triangleright \ T_1 \wedge T_2 \ = \ \ker^{-1} \big(\mathbb{K} \{ g_4 - g_1, \ g_3 - g_1, \ g_2 - g_1 \} \big).$

Motivations	Reduction operators	Confluence and completion	Conclusion
Obstructions f	to confluence		

$$\forall T \in \mathsf{RO}(G, <), \text{ we let } \mathsf{NF}(T) = \{g \mid T(g) = g\}.$$

 $NF(T_1 \wedge T_2) \subseteq NF(T_1) \cap NF(T_2).$

In general, the inclusion is strict:

▷ $T_1 = \ker^{-1} (\mathbb{K} \{ g_2 - g_1, g_4 - g_3 \})$ and $T_2 = \ker^{-1} (\mathbb{K} \{ g_4 - g_2 \})$.

 $\triangleright \ T_1 \wedge T_2 \ = \ \ker^{-1} \big(\mathbb{K} \{ g_4 - g_1, \ g_3 - g_1, \ g_2 - g_1 \} \big).$

▷ $g_3 \in NF(T_1) \cap NF(T_2)$ and $g_3 \notin NF(T_1 \land T_2)$.

Motivations	Reduction operators	Confluence and completion	Conclusion
Obstructions to co	onfluence		
$\blacktriangleright \forall T \in RO(G, <$), we let NF (T) $= \{g \mid T \}$	$T(g) = g\}.$	
• Given $P = (T_1,$	$T_2) \subset \operatorname{\mathbf{RO}}(G, <)$, we hav	e	
	$NF(T_1 \wedge T_2) \subseteq NF$	$(T_1) \cap NF(T_2)$.	
In general, the incl	lusion is strict:		
$\triangleright T_1 = \ker^{-1}(1)$	$\mathbb{K}\{g_2-g_1,\ g_4-g_3\})$ and T_2	$= \ker^{-1} (\mathbb{K} \{ g_4 - g_2 \}).$	
\triangleright $T_1 \wedge T_2$ = ke	$er^{-1}(\mathbb{K}\{g_4-g_1, g_3-g_1, g_2-g_1, g_3-g_1, g_3-g_$	$-g_1$).	
▷ $g_3 \in NF(\mathcal{T}_1)$	$\cap NF(T_2) \text{ and } g_3 \notin NF(T_1)$	$\wedge T_2$).	
Remark. The obstru	ction to confluence is \nexists g_3 -	$\rightarrow g_1: g_3$	f_{1} f_{2} f_{2} f_{2} f_{3} g_{2} g_{1} f_{1} g_{2}

16/21

Motivations	Reduction operators	Confluence and completion	Conclusion
Confluence			

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000	00000	00000	00
Confluence			

$$\wedge F = \ker^{-1} \left(\sum_{T \in F} \ker \left(T \right) \right) \text{ and } \mathsf{NF} \left(F \right) = \bigcap_{T \in F} \mathsf{NF} \left(T \right).$$

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000	00000	00000	00
Confluence			

$$\wedge F = \ker^{-1} \left(\sum_{T \in F} \ker(T) \right) \text{ and } \mathsf{NF}(F) = \bigcap_{T \in F} \mathsf{NF}(T).$$

Lemma. NF $(\wedge F) \subseteq$ NF (F).

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	
Cauffurnes			
Confilience			

$$\wedge F = \ker^{-1}\left(\sum_{T \in F} \ker(T)\right) \text{ and } \operatorname{NF}(F) = \bigcap_{T \in F} \operatorname{NF}(T).$$

Lemma. NF $(\wedge F) \subseteq$ NF (F).

Notation. $Obs^{F} = NF(F) \setminus NF(\wedge F)$.

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	
Confluence			

$$\wedge F = \ker^{-1}\left(\sum_{T \in F} \ker(T)\right) \text{ and } \operatorname{NF}(F) = \bigcap_{T \in F} \operatorname{NF}(T).$$

Lemma. NF $(\land F) \subseteq$ NF (F).

Notation. $Obs^{F} = NF(F) \setminus NF(\wedge F)$.

Definition. *F* is said to be **confluent** if $Obs^F = \emptyset$.

Motivations	Reduction operators	Confluence and completion	Conclusion
0000000	00000	00000	00
Confluence			

$$\wedge F = \ker^{-1}\left(\sum_{T \in F} \ker(T)\right) \text{ and } \operatorname{NF}(F) = \bigcap_{T \in F} \operatorname{NF}(T).$$

Lemma. NF $(\land F) \subseteq$ NF (F).

Notation. $Obs^{F} = NF(F) \setminus NF(\wedge F)$.

Definition. F is said to be confluent if $Obs^F = \emptyset$.

Proposition. F is confluent if and only if it is so for

$$\xrightarrow{F} = \bigcup_{T \in F} \xrightarrow{T}$$

Motivations	Reduction operators	Confluence and completion ○○○●○	Conclusion
Completion			

▶ $P = (T_1, T_2)$, where

$$\mathcal{T}_1 \;=\; \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathcal{T}_2 \;=\; \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	
Completion			

 \triangleright $P = (T_1, T_2)$, where

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

We complete P with?

Motivations	Reduction operators	Confluence and completion	Conclusion
Completion			

 \triangleright $P = (T_1, T_2)$, where

$$T_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ and } T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

We complete P with

Motivations	Reduction operators	Confluence and completion ○○○●○	Conclusion
Completion			

▶ $P = (T_1, T_2)$, where

$$\mathcal{T}_1 \;=\; \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathcal{T}_2 \;=\; \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

We complete P with

Formally

$$C^{P} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

٠

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$C^F(g) = \begin{cases} \wedge F(g), & \text{if } g \in Obs^F \\ g, & \text{otherwise.} \end{cases}$$

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$C^F(g) = \begin{cases} \wedge F(g), & ext{if } g \in Obs^F \\ g, & ext{otherwise.} \end{cases}$$

▶ What is the procedure for computing C^F?

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$C^F(g) = egin{cases} \wedge F(g), & ext{if } g \in ext{Obs}^F \ g, & ext{otherwise.} \end{cases}$$

What is the procedure for computing C^F?

▷ Compute $\land F$ by "Gaussian elimination".

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$\mathcal{C}^F(g) \;=\; egin{cases} \wedge F(g), & ext{if} \;\; g \;\in\; ext{Obs}^F \ g, \;\; ext{otherwise.} \end{cases}$$

What is the procedure for computing C^F?

▷ Compute $\land F$ by "Gaussian elimination".

▷ For every g such that $g \notin NF(\land F)$ and $g \in NF(F)$: $C^F(g) = \land F(g)$.

Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$C^F(g) = egin{cases} \wedge F(g), & ext{if } g \in ext{Obs}^F \ g, & ext{otherwise.} \end{cases}$$

What is the procedure for computing C^F?

- ▷ Compute $\land F$ by "Gaussian elimination".
- ▷ For every g such that $g \notin NF(\land F)$ and $g \in NF(F)$: $C^F(g) = \land F(g)$.

▷ For every all other
$$g \in G$$
: $C^F(g) = g$.
Motivations	Reduction operators	Confluence and completion	Conclusion
		00000	

Lattice description of the completion procedure

• Let $F \subset \mathbf{RO}(G, <)$.

F is completed by $C^F \in \mathbf{RO}(G, <)$, defined as follows

$$\mathcal{C}^F(g) \;=\; egin{cases} \wedge F(g), & ext{if } g \;\in\; ext{Obs}^F \ g, & ext{otherwise.} \end{cases}$$

▶ What is the procedure for computing C^F?

▷ Compute $\land F$ by "Gaussian elimination".

▷ For every g such that $g \notin NF(\land F)$ and $g \in NF(F)$: $C^F(g) = \land F(g)$.

 \triangleright For every all other $g \in G$: $C^F(g) = g$.

Theorem. Letting $\forall \overline{F} = \ker^{-1} (\operatorname{NF} (F))$, we have:

$$C^F = (\wedge F) \vee (\vee \overline{F}).$$

Motivations	Reduction operators	Confluence and completion	Conclusion
			•0
Plan			

IV. Conclusion

Motivations	Reduction operators	Confluence and completion	Conclusion O
Summary and per	spectives		

- Summary of results (arXiv:1605.00174):
 - \triangleright We equipped **RO**(*G*, <) with a lattice structure.
 - ▷ We introduced lattice formulations of confluence and completion.

Motivations 0000000	Reduction operators	Confluence and completion	Conclusion O
Summary and	perspectives		

- Summary of results (arXiv:1605.00174):
 - ▷ We equipped **RO** (G, <) with a lattice structure.
 - ▷ We introduced lattice formulations of confluence and completion.
- This lattice approach provides applications to higher-dimensional algebra:
 - ▷ Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).

Motivations	Reduction operators	Confluence and completion	Conclusion ○●
Summary and	perspectives		

- Summary of results (arXiv:1605.00174):
 - ▷ We equipped **RO** (G, <) with a lattice structure.
 - ▷ We introduced lattice formulations of confluence and completion.
- This lattice approach provides applications to higher-dimensional algebra:
 - ▷ Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).
 - ▷ Procedure for computing syzygies for linear rewriting systems (arXiv:1708.08709).

Motivations	Reduction operators	Confluence and completion	Conclusion
			00
Summary an	d perspectives		

- Summary of results (arXiv:1605.00174):
 - ▷ We equipped **RO** (G, <) with a lattice structure.
 - ▷ We introduced lattice formulations of confluence and completion.

This lattice approach provides applications to higher-dimensional algebra:

- ▷ Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).
- ▷ Procedure for computing syzygies for linear rewriting systems (arXiv:1708.08709).
- Further works:
 - Reduction operators for left modules.
 - ▷ Applications to algebraic study of linear functionnal systems (e.g. Ore extensions).

Motivations	Reduction operators	Confluence and completion	Conclusion O
Summary and	perspectives		

- Summary of results (arXiv:1605.00174):
 - ▷ We equipped **RO** (G, <) with a lattice structure.
 - ▷ We introduced lattice formulations of confluence and completion.
- This lattice approach provides applications to higher-dimensional algebra:
 - ▷ Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).
 - ▷ Procedure for computing syzygies for linear rewriting systems (arXiv:1708.08709).
- Further works:
 - Reduction operators for left modules.
 - ▷ Applications to algebraic study of linear functionnal systems (e.g. Ore extensions).
- Thank you for listening!