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I. Motivations

> Computational problems in algebra and rewriting theory

> Termination, confluence and Grdbner bases

Il. Reduction operators

> Reduction operators and linear rewriting systems

> Lattice structure of reduction operators

Ill. Confluence and completion

> Lattice formulation of confluence

> Lattice formulation of completion

IV. Conclusion and perspectives

INRIA Lille - Nord Europe Reduction operators and completion of linear rewriting systems



Motivations
°

Plan

I. Motivations

- Nord Europe Reduction operators and completion of linear rewriting systems



Motivations
000000

Computational problems in algebra

» Computational problems:

> Our running example: how to compute a linear basis of a K-algebra A?
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Computational problems in algebra

» Computational problems:

> Our running example: how to compute a linear basis of a K-algebra A?

> Development of effective methods: in algebraic geometry, homological algebra,
algebraic combinatorics, for polynomial /functional equations, cryptography, - - -
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Motivations
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Computational problems in algebra

» Computational problems:
> Our running example: how to compute a linear basis of a K-algebra A?

> Development of effective methods: in algebraic geometry, homological algebra,
algebraic combinatorics, for polynomial /functional equations, cryptography, - - -

» These problems concern various algebraic structures:

> (associative, commutative, Lie) algebras, rings of functional operators,
> operads, PROS, monoidal categories,

[
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Computational problems in algebra

» Computational problems:
> Our running example: how to compute a linear basis of a K-algebra A?

> Development of effective methods: in algebraic geometry, homological algebra,
algebraic combinatorics, for polynomial /functional equations, cryptography, - - -

» These problems concern various algebraic structures:

> (associative, commutative, Lie) algebras, rings of functional operators,
> operads, PROS, monoidal categories,

[

» Rewriting method: present algebraic structures by generators and oriented relations.
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Motivations
000000

Computational problems in algebra

» Computational problems:
> Our running example: how to compute a linear basis of a K-algebra A?

> Development of effective methods: in algebraic geometry, homological algebra,
algebraic combinatorics, for polynomial /functional equations, cryptography, - - -

» These problems concern various algebraic structures:

> (associative, commutative, Lie) algebras, rings of functional operators,
> operads, PROS, monoidal categories,

[

» Rewriting method: present algebraic structures by generators and oriented relations.

> Notion of normal forms.

> Procedures for computing normal forms.
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).

> Monomials over which we cannot apply yx — xy are called normal forms: x"y™.
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).

> Monomials over which we cannot apply yx — xy are called normal forms: x"y™.

> In this case: A = K{monomials in normal forms}.
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).

> Monomials over which we cannot apply yx — xy are called normal forms: x"y™.
> In this case: A = K{monomials in normal forms}.

> Linear decompositions: obtained by applying yx — xy as long as it is possible.
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).

> Monomials over which we cannot apply yx — xy are called normal forms: x"y™.
> In this case: A = K{monomials in normal forms}.

> Linear decompositions: obtained by applying yx — xy as long as it is possible.

» A an algebra presented by generators and oriented relations.

> Let NF = {monomials in normal forms form}.

> Is NF a basis of A?
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Example

» A = K][x, y] the polynomial algebra over two indeterminates.

> As an associative algebra: 2 generators (x and y) and 1 relation (yx — xy).

> Monomials over which we cannot apply yx — xy are called normal forms: x"y™.
> In this case: A = K{monomials in normal forms}.

> Linear decompositions: obtained by applying yx — xy as long as it is possible.

» A an algebra presented by generators and oriented relations.

> Let NF = {monomials in normal forms form}.
> Is NF a basis of A?

> That is: is NF a generating family? is NF a free family?
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Termination

> A = K(x | x — xx).

> A = K1 & Kxand NF = {1}.
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> A = K(x | x — xx).
> A = K1 & Kxand NF = {1}.

> In general, NF is not a generating family of Al
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Termination

> A = K(x | x — xx).
> A = K1 & Kxand NF = {1}.

> In general, NF is not a generating family of Al

Definition. Let A be an algebra. A presentation of A is said to be terminating if there
is no infinite sequence of reductions

h— b — o — o — fon —
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Termination

> A = K(x | x — xx).
> A = K1 & Kxand NF = {1}.

> In general, NF is not a generating family of Al

Definition. Let A be an algebra. A presentation of A is said to be terminating if there
is no infinite sequence of reductions

h— b — o — o — fon —

» A an algebra admitting a terminating presentation.

> Every a € A is equal to a normal form.
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Termination

> A = K(x | x — xx).
> A = K1 & Kxand NF = {1}.

> In general, NF is not a generating family of Al

Definition. Let A be an algebra. A presentation of A is said to be terminating if there
is no infinite sequence of reductions

h— b — o — o — fon —

» A an algebra admitting a terminating presentation.

> Every a € A is equal to a normal form.

» When the presentation of A is terminating, NF is a generating family of Al
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Confluence

> A =Ky |y — yx).
> yxy, yxx € NF and yxy = yxx in A
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Confluence

> A =Ky |y — yx).
> yxy, yxx € NF and yxy = yxx in A:
yyy

T

yxy Yyx

/

VXX
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Confluence

> A =Ky |y — yx).
> yxy, yxx € NF and yxy = yxx in A:
yyy

T

yxy Yyx

/

VXX

Definition. Let A be an algebra. A presentation of A is said to be confluent if
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Confluence

> A =Ky |y — yx).
> yxy, yxx € NF and yxy = yxx in A:
yyy

T

yxy / yyx

VXX

Definition. Let A be an algebra. A presentation of A is said to be confluent if

» When the presentation of A is confluent and terminating, NF is a linear basis of Al
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Grobner Bases

» Grobner bases appear in

> Lie algebras [Shirshov 1962],
> Commutative algebras [Buchberger 1965],

> Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],

v

Operads [Dotsenko-Khoroshkin 2010],
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Grobner Bases

» Grobner bases appear in

> Lie algebras [Shirshov 1962],
> Commutative algebras [Buchberger 1965],

> Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],

v

Operads [Dotsenko-Khoroshkin 2010],

» The relations are oriented w.r.t a monomial order <:
> If f = Im(f) — r(f), then Im(f) — r(f).

> A monomial order ensures termination.
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Grobner Bases

» Grobner bases appear in

> Lie algebras [Shirshov 1962],
> Commutative algebras [Buchberger 1965],

> Associative algebras [Bokut 1976, Bergman 1978, Mora 1992],

v

Operads [Dotsenko-Khoroshkin 2010],

» The relations are oriented w.r.t a monomial order <:
> If f = Im(f) — r(f), then Im(f) — r(f).

> A monomial order ensures termination.

» A = K(X | R), where the elements of R are oriented w.r.t a monomial order.

> R is called a Grobner basis if it induces a confluent presentation.
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Objectives

» Representations of rewriting systems by reduction operators:
> Formalisation of noncommutative Grébner bases [Bergman, 1978],

> Applications to Koszul duality [Berger 1998].
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Objectives

» Representations of rewriting systems by reduction operators:
> Formalisation of noncommutative Grébner bases [Bergman, 1978],

> Applications to Koszul duality [Berger 1998].

» Objective: extend the functional approach.

> We introduce a lattice interpretation of the confluence property.

> We deduce a lattice interpretation of the completion procedure.
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Objectives

» Representations of rewriting systems by reduction operators:
> Formalisation of noncommutative Grébner bases [Bergman, 1978],

> Applications to Koszul duality [Berger 1998].

» Objective: extend the functional approach.
> We introduce a lattice interpretation of the confluence property.
> We deduce a lattice interpretation of the completion procedure.

> The functional approach concerns general linear rewriting systems!
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Reduction operators
@000

Definition

» (G, <) a fixed well-ordered set.
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Definition

» (G, <) a fixed well-ordered set.

> For algebras: G is a set of monomials and < is a monomial order.
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Definition

» (G, <) a fixed well-ordered set.
> For algebras: G is a set of monomials and < is a monomial order.

> In our examples: (G, <) is a totally ordered finite set.
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Definition

» (G, <) a fixed well-ordered set.
> For algebras: G is a set of monomials and < is a monomial order.

> In our examples: (G, <) is a totally ordered finite set.

Notations. Vv, v € KG
> Im(v): the greatest basis element occurring in the decomposition of v.

> Weletv < v if Im(v) < Im(V).

- Nord Europe Reduction operators and completion of linear re



Reduction operators
@000

Definition

» (G, <) a fixed well-ordered set.
> For algebras: G is a set of monomials and < is a monomial order.

> In our examples: (G, <) is a totally ordered finite set.

Notations. Vv, v € KG
> Im(v): the greatest basis element occurring in the decomposition of v.

> Weletv < v if Im(v) < Im(V).

Definition. An endomorphism T of KG is a reduction operator relative to (G, <) if
> T is a projector,

> Vg € G, we have T(g) < g.
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Example

» (G <) ={a <& <& <&}

110 0 100 0
000 O 010 1
=100 1 1] ™M 7==1001 0
0000 0000
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Reduction operators
o] lele)]

Example

» (G <) ={a <& <& <&}

T]_ = and T2 =

O OO
OO o
o= oo
O = O O
O OO
[Nl SN o)
o= oo
O O = O

> v = (/\17 A2, Az, )\4) € KG.
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Reduction operators
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Example

» (G <) ={a <& <& <&}

110 0 100 0
000 O 010 1
=100 1 1] ™M 7==1001 0
0000 0000

> v = (/\1, )\27 )\37 )\4) c KG.

> Ti reduces v as follows

v Ti(v) = (A1+ A2, 0, A3+ X4, 0).
1
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Reduction operators
o] lele)]

Example

» (G <) ={a <& <& <&}

T1 = and T2 =

O OO
OO o
o= oo
O = O O
O OO
[Nl SN o)
o= oo
O O = O

> v = (/\1, )\27 )\37 )\4) c KG.

> Ti reduces v as follows

v Ti(v) = (A1+ A2, 0, A3+ X4, 0).
1

> T, reduces v as follows
v — Ta(v) = (A1, A2+ g, A3, 0).
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Lattice Structure

Proposition. The map

ker: RO (G, <) — {subspaces of KG},
T — ker(T)

is a bijection.
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Reduction operators
[e]e] le]

Lattice Structure

Proposition. The map

ker: RO (G, <) — {subspaces of KG},
T — ker(T)

is a bijection.
Notation. ker™? : {subspaces of ]KG} — RO (G, <) the inverse of ker.

Lattice structure. (RO(G7 <), XA, \/) is a lattice where

> T1 <X T, if ker(T2) C ker(Ty).
> TiATa = ker™* (ker(T1) + ker(T2)).
b TV T = ker ! (ker(T1) Nker(T2)).
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Reduction operators
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Example

> (G, <) =1{a <& <& < &}
1100 100 0
0000 01 0 1
=10 01 1| ™M 7==10 01 0
000 0O 000 0O
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Reduction operators
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Example

> (G, <) = {g1 < @ < g < g4},

T. =

0 0
0 0
11 and T, =
00

[N Nl
O OO+
[N« Non
[eNel o)
o= oo
o O = O

» By definition, ker (T A T2) = ker(T1) + ker(T2)
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Reduction operators
[e]o]e] )

Example

> (G, <) = {g1 < @ < g < g4},
1

T, =

0
0
1 and T, =
0

O O o~
O oo
o o= Oo
o= oo
O O+ O

0
0
0

» By definition, ker (T1 A T2) = ker(T1) + ker(T2), so that
> ker(TLAT2) = K{g— g1} + K{gs — g3}
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Reduction operators
[e]o]e] )

Example

> (G, <) = {g1 < @ < g < g4},

T, =

0 0
0 0
11 and T, =
0 0

O oo
O OO
O oo
[eNel o)
o= oo
O O = O

» By definition, ker (T1 A T2) = ker(T1) + ker(T2), so that

> ker(T1AT2) = K{gz — g1} + K{gs — g3} + K{g — g2}
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Reduction operators
[e]o]e] )

Example

> (G, <) = {g1 < @ < g < g4},

T. =

0 0
0 0
11 and T, =
00

[N Nl
O OO+
[N« Non
[eNel o)
o= oo
o O = O

» By definition, ker (T1 A T2) = ker(T1) + ker(T2), so that
> ker(TiATy) = K{ge— a1} + K{gs — g3} + K{aw — g2}

> Hence, ker (T1 A T2) is spanned by the rows of the matrix
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Reduction operators
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Example

> (G, <) = {g1 < @ < g < g4},

T. =

0 0
0 0
11 and T, =
00

[N Nl
O OO+
[N« Non
[eNel o)
o= oo
o O = O

» By definition, ker (T1 A T2) = ker(T1) + ker(T2), so that
> ker(TiATy) = K{ge— a1} + K{gs — g3} + K{aw — g2}

> Hence, by Gaussian elimination, ker (T1 A T2) is spanned by the rows of the matrix

-1 1 0 0
-1 0 1 0.
-1 0 0 1
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Reduction operators
[e]o]e] )

Example

> (G, <) = {g1 < @ < g < g4},

T. =

0 0
0 0
11 and T, =
00

[N Nl
[N« Non
[eNel o)
o= oo
o O = O

» By definition, ker (T1 A T2) = ker(T1) + ker(T2), so that
> ker(TiATy) = K{ge— a1} + K{gs — g3} + K{aw — g2}

> Hence, by Gaussian elimination, ker (T1 A T) is spanned by the rows of the matrix

-1 1 0 0
-1 0 1 0.
-1 0 0 1

» We deduce
1 1 1 1
0 0 0 O
ATz =14 g o o
0 0 0 O
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Confluence and completion
@000

Obstructions to confluence

> YT € RO(G, <),welet NF(T) = {g | T(g) = g}
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Confluence and completion
@000

Obstructions to confluence

> YT € RO(G, <),welet NF(T) = {g | T(g) = g}

» Given P = (Ty, T2) C RO(G, <), we have

NF(Tl A Tz) - NF(Tl)ﬂNF(Tz).
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Confluence and completion
@000

Obstructions to confluence

> YT € RO(G, <),welet NF(T) = {g | T(g) = g}

» Given P = (Ty, T2) C RO(G, <), we have

NF(Tl A Tz) - NF(Tl)ﬂNF(Tz).

» In general, the inclusion is strict
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Confluence and completion
@000

Obstructions to confluence

> YT € RO(G, <),welet NF(T) = {g | T(g) = g}

» Given P = (Ty, T2) C RO(G, <), we have
NF(Te A T2) € NF(T1)NNF(T2).
» In general, the inclusion is strict:

> Ty = ker™! (K{g2 — g1, ga —g3}) and T = ker—1 (K{gs — &2}).
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Confluence and completion
@000

Obstructions to confluence

> VT € RO(G, <), welet NF(T) = {g | T(g) = g}
» Given P = (Ty, T2) C RO(G, <), we have
NF(Te A T2) € NF(T1)NNF(T2).
» In general, the inclusion is strict:
> Ti = ker ' (K{g — g1, g4 —g3}) and T2 = ker " (K{gs — 2}).

> Ti ATy = ker * (K{gs — g1, g3 — &1, & — &1})-
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Confluence and completion
@000

Obstructions to confluence

> VT € RO(G, <), welet NF(T) = {g | T(g) = g}
» Given P = (Ty, T2) C RO(G, <), we have
NF(Te A T2) € NF(T1)NNF(T2).
» In general, the inclusion is strict:
> Ti = ker ' (K{g — g1, g4 —g3}) and T2 = ker " (K{gs — 2}).

> TiAT2 = ker ™  (K{gs — g1, 83— &1, &2 — &1}).

> g3 € NF(Tl)mNF(Tz) and g3 g NF(Tl/\Tg).
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Confluence and completion
@000

Obstructions to confluence

> YT € RO(G, <),welet NF(T) = {g | T(g) = g}

» Given P = (Ty, T2) C RO(G, <), we have
NF(Ti A T2) C NF(Ti)ANF(T2).
» In general, the inclusion is strict:
> Ti = ker ' (K{g — g1, g4 —g3}) and T2 = ker " (K{gs — 2}).
> TiATy = ker ' (K{ga — &1, 83— &1, &2 — &1})
> g3 € NF(T1)NNF(T2) and g3 ¢ NF(T1 A Tp).
82

—

81
Reduction operators and completion of linear rewriting systems

Remark. The obstruction to confluence is # g3 — gi: g3
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Confluence

> Let F C RO(G, <).
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Confluence and completion
0e00

Confluence

> Let F C RO(G, <).

AF = ker ' [ Y ker(T)| and NF(F) = () NF(T).

Ter TeF
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Confluence and completion
0e00

Confluence

> Let F C RO(G, <).

AF = ker ™ (Zm(r)) and NF(F) = (| NF(T).

TeF

Lemma. NF(AF) C NF(F).
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Confluence and completion
0e00

Confluence

> Let F C RO (G, <).

AF = ker™! (Zm(r)) and NF(F) = (| NF(T).

TeF

Lemma. NF(AF) C NF(F).

Notation. Obs” = NF(F)\ NF (AF).
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Confluence and completion
0e00

Confluence

> Let F C RO (G, <).

AF = ker~ <Zker ) and NF(F) = (| NF(T).

TeF TeF

Lemma. NF(AF) C NF(F).
Notation. Obs” = NF(F)\ NF (AF).

Definition. F is said to be confluent if Obs™ = 0.
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Confluence and completion
0e00

Confluence

> Let F C RO (G, <).

AF = ker~ <Zker ) and NF(F) = (| NF(T).

TeF TeF

Lemma. NF(AF) C NF(F).
Notation. Obs” = NF(F)\ NF (AF).
Definition. F is said to be confluent if Obs® = 0.

Proposition. F is confluent if and only if it is so for
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Confluence and completion
[e]e] o)

Completion

» P = (Ti, T2), where

Ti = and T, =

[Nl
OO o
o= oo
o = O O
[N Nen
[eNeN o)
o= oo
o O = O
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Confluence and completion
[e]e] o)

Completion

» P = (Ti, T2), where

T, =

» We complete P with?

110 0 100 0
0000 01 0 1
001 1] ™MT=10010
0000 0000
84
/K
83 22
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Confluence and completion
[e]e] o)

Completion

» P = (Ti, T2), where

T, =

> We complete P with

110 0 100 0
0000 01 0 1
001 1] ™MT=10010
0000 0000
84
/K
83 22
R/
81
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Confluence and completion
[e]e] o)

Completion

» P = (Ti, T2), where

1 1 0 0 1 0 0 O
0 0 0O 01 0 1
n=1oo1 1] ™™2=10010
0 0 0O 0 0 0O
> We complete P with
84
/K
83 82
R/
81
» Formally
1 01 0
p_ |0 1 0 O
¢ = 0 00 O
0 0 0 1
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Confluence and completion
oooe

Lattice description of the completion procedure

> Let F C RO (G, <).
> Fis completed by CF € RO (G, <), defined as follows

CFlg) = AF(g), if g € Obs"
g, otherwise.
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Confluence and completion
oooe

Lattice description of the completion procedure

> Let F C RO (G, <).
> Fis completed by CF € RO (G, <), defined as follows

CFlg) = AF(g), if g € Obs"
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Lattice description of the completion procedure

> Let F C RO (G, <).
> Fis completed by CF € RO (G, <), defined as follows

CFlg) = AF(g), if g € Obs"
g, otherwise.

> What is the procedure for computing C?

> Compute AF by “Gaussian elimination”.

> For every g such that g ¢ NF(AF)and g € NF(F): CF(g) = AF(g).

> For every all other g € G: Cf(g) = &

Theorem. Letting VF = ker™ (NF (F)), we have:

" = (AF) Vv (VF).
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> We equipped RO (G, <) with a lattice structure.

> We introduced lattice formulations of confluence and completion.
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» Summary of results (arXiv:1605.00174):
> We equipped RO (G, <) with a lattice structure.

> We introduced lattice formulations of confluence and completion.

» This lattice approach provides applications to higher-dimensional algebra:
> Construction of a contracting homotopy for the Koszul complex (arXiv:1504.03222).
> Procedure for computing syzygies for linear rewriting systems (arXiv:1708.08709).
» Further works:
> Reduction operators for left modules.

> Applications to algebraic study of linear functionnal systems (e.g. Ore extensions).

» Thank you for listening!
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