
From moments to sparse representations, an
algebraic, geometric and algorithmic viewpoint

Bernard Mourrain

January 29, 2019

Contents

Contents 1

1 Sparse representations from moments 3
1.1 Prony’s method in one variables . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Symmetric tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Multilinear tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Simultaneous decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Sparse interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Duality 15
2.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Dual series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Inverse systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



2 CONTENTS

3 Artinian algebra 23
3.1 Univariate polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Roots from the algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The dual of an Artinian algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Roots from the dual structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Decomposition from moments 43
4.1 Hankel operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Artinian Gorenstein Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Hankel operators of finite rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Decomposition of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Border basis, orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Structured low rank decomposition of Hankel operators . . . . . . . . . . . 65
4.8 Real positive series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Applications 69
5.1 Sparse decomposition from generating series . . . . . . . . . . . . . . . . . . 69
5.2 Convolution of finite rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Dirac measures from Fourier coefficients . . . . . . . . . . . . . . . . . . . . . 75
5.4 Polynomial-exponential sums from values . . . . . . . . . . . . . . . . . . . . 77
5.5 Sparse interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 83



Chapter 1

Sparse representations from
moments

1.1 Prony’s method in one variables . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Symmetric tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Multilinear tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Simultaneous decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Sparse interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Prony’s method in one variables

One of the first work in this area is probably due to Gaspard-Clair-François-Marie Riche
de Prony, mathematician and engineer of the École Nationale des Ponts et Chaussées. He
was working on Hydraulics. To analyze the expansion of various gases, he proposed in
[dP95] a method to fit a sum of exponentials at equally spaced data points in order to
extend the model at intermediate points. More precisely, he was studying the following
problem:

Given a function h ∈ C∞(R) of the form

x ∈R 7→ h(x) =
r
∑

i=1

ωi e fi x ∈C (1.1)

where f1, . . . , fr ∈ C are pairwise distinct, ωi ∈ C \ {0}, the problem consists in
recovering

• the distinct frequencies f1, . . . , fr ∈C,

• the coefficients ωi ∈ C \ {0},

Here is an example of such a signal, which is the superposition of several “oscillations”
with different frequencies.
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4 CHAPTER 1. SPARSE REPRESENTATIONS FROM MOMENTS

The approach proposed by G. de Prony can be reformulated into a truncated series re-
construction problem. By choosing an arithmetic progression of points inR, for instance
the integers N, we can associate to h, the generating series:

σh(y) =
∑

a∈N

h(a)
ya

a!
∈C[[y]],

where C[[y]] is the ring of formal power series in the variable y . If h is of the form
(1.1), then

σh(y) =
r
∑

i=1

∑

a∈N

ωiξ
a
i

ya

a!
=

r
∑

i=1

ωie
ξi y (1.2)

where ξi = e fi . Prony’s method consists in reconstructing the decomposition (1.2) from
a small number of coefficients h(a) for a = 0, . . . , 2r − 1. It performs as follows:

• From the values h(a) for a ∈ [0, . . . , 2r − 1] , compute the polynomial

p(x) =
r
∏

i=1

(x − ξi) = x r −
r−1
∑

j=0

p j x
j,

which roots are ξi = e fi , i = 1, . . . , r as follows. Since it satisfies the recurrence
relations

∀ j ∈ [0, . . . , r − 1],
r−1
∑

i=0

σ j+i pi −σ j+r = −
r
∑

i=1

wiξ
j
i p(ξi) = 0,

it is the unique solution of the system:












σ0 σ1 . . . σr−1

σ1 . . .

... . . .
...

. . .

σr−1 . . . σ2r−2



























p0

p1
...
...

pr−1















=















σr

σr+1
...
...

σ2r−1















. (1.3)
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• Compute the roots ξ1, . . . ,ξr of the polynomial p(x).

• To determine the weight coefficients w1, . . . , wr , solve the following linear (Vander-
monde) system:









1 1 . . . 1
ξ1 ξ2 . . . ξr
...

...
...

ξr−1
1 ξr−1

2 . . . ξr−1
r

















w1

w2
...

wr









=









h0

h1
...

hr−1









.

This approach can be improved by computing the roots ξ1, . . . ,ξr , directly as the gener-
alized eigenvalues of a pencil of Hankel matrices. Namely, Equation (1.3) implies that

H0
︷ ︸︸ ︷













σ0 σ1 . . . σr−1

σ1 . . .

... . . .
...

. . .

σr−1 . . . σ2r−2













Mp
︷ ︸︸ ︷















0 p0

1
... p1
. . . . . .

...
. . . 0

...
1 pr−1















=

H1
︷ ︸︸ ︷













σ1 σ2 . . . σr

σ2 . . .

... . . .
...

. . .

σr . . . σ2r−1













,

(1.4)
so that the generalized eigenvalues of the pencil (H1, H0) are the eigenvalues of the com-
panion matrix Mp of p(x), that is, its the roots ξ1, . . . ,ξr . This variant of Prony’s method
is also called the pencil method in the literature.

For numerical improvement purposes, one can also chose an arithmetic progression
a
T and a ∈ [0, . . . , 2r−1], with T ∈R+ of the same order of magnitude as the frequencies

fi. The roots of the polynomial p are then ξi = e
fi
T .

1.2 Symmetric tensor decomposition

Symmetric tensors of order d of a vector space V of dimension n + 1 over a field K
are the elements of the symmetric product S(d)(V ). Once we have chosen a basis of V ,
these elements can be identified with homogeneous polynomials of degree d in n + 1
variables x0, x1, . . . , xn. Let S = K[x0, x1, . . . , xn] = K[x ] be the ring of polynomials
in these variables. The set of symmetric tensors of degree d ∈ N is the vector space
Sd of homogenous polynomials of degree d. An element ψ ∈ Sd is of the form ψ =
∑

|α|=d σα
�d
α

�

xα where α = (α0, . . . ,αn) ∈ Nn+1, xα = xα0
0 · · · x

αn
n ,
�d
α

�

= d!
α0!···αn! for |α| =

α0 + · · ·+αn = d.
The tensor decomposition problem is the following:

Problem 1.2.1 (Symmetric tensor decomposition)



6 CHAPTER 1. SPARSE REPRESENTATIONS FROM MOMENTS

Given a homogeneous polynomial

ψ(x ) =
∑

|α|=d

σα

�

d
α

�

xα

of degree d in the variables x = (x0, x1, . . . , xn), find a decomposition of ψ of the
form

ψ(x ) =
r
∑

i=1

ωi(ξi,0 x0 + ξi,1 x1 + · · ·+ ξi,n xn)
d

where ξi = (ξi,0,ξi,1, . . . ,ξi,n), i = 1, . . . , r span distinct lines in K
n+1

and ωi ∈K.

The minimal r in such a decomposition is called the rank of ψ.

In the decomposition, the vectors ξi span distinct lines in K
n+1

, which means that
they define distinct points in P(K

n+1
). In particular, they are non-zero vectors.

Example 1.2.2 Consider a quadratic form q(x ) =
∑

0¶i, j¶n qi, j x i x j ∈ R[x ]2 with qi, j =
q j,i. Using a classical reduction of quadratic forms into weighted sums of squares (e.g. ax2+
2bx y + c y2 = a(x + b

a y)2 + (c − b2

a )y
2 if a 6= 0), q can be written as

q(x ) =
r
∑

i=1

ωi(ξi,0 x0 + · · ·+ ξi,n xn)
2

with ωi ∈ K and ξi = (ξi,0, . . . ,ξi,n) are distinct in Pn. The minimal number of terms in
this decomposition is known to be the rank of q, or equivalently, the rank of the symmetric
matrix Q = (qi, j).

1.2.1 Sylvester method

In [Syl51], J.J. Sylvester proposed a method to decompose a binary form, that is, a ho-
mogeneous polynomial in two variables as a sum of powers of linear forms. This method
is based on the following theorem.

Theorem 1.2.3 The binary form ψ(x0, x1) =
∑d

i=0σi

�d
i

�

x d−i
0 x i

1 can be decomposed as a
sum of r distinct powers of linear forms

ψ=
r
∑

k=1

ωk(αk x0 + βk x1)
d



1.2. SYMMETRIC TENSOR DECOMPOSITION 7

iff there exists a polynomial p(x0, x1) := p0 x r
0 + p1 x r−1

0 x1 + · · ·+ pr x r
1 s.t.









σ0 σ1 . . . σr

σ1 σr+1
...

...
σd−r . . . σd−1 σd

















p0

p1
...

pr









= 0

and of the form p = c
∏r

k=1(βk x0 − αk x1) with (αk,βk) ∈ K2 \ {0} pairewise distinct
directions.

Proof. If ψ=
∑r

k=1ωk(αk x0 +βk x1)d then σi =
∑r

k=1ωkα
d−i
k β i

k and for j = 0, . . . , d − r
r
∑

i=0

σi+ j pi =
r
∑

i=0

r
∑

k=1

ωkpiα
d−i− j
k β

i+ j
k =

r
∑

k=1

ωkα
d−r
k β

j
k p(αk,βk) = 0

Conversely, assume that p = p0 x r
0 + p1 x r−1

0 x1 + · · ·+ pr x r
1 =

∏r
k=1(βk x0 −αk x1) with

~p = [p0, . . . , pr] ∈ ker Hd−r,r
σ

where

Hd−r,r
σ

=









σ0 σ1 . . . σr

σ1 σr+1
...

...
σd−r . . . σd−1 σd









.

By a generic change of coordinates in (x0, x1), we can assume that pr 6= 0.
As the directions (αk,βk) are pairwise distinct, there exists ω1, . . . ,ωr such that





α0
1β

d
1 · · · α0

rβ
d
r

...
...

αd
1β

0
1 · · · αd

rβ
0
r









ω1
...
ωr



=





σ0
...

σr−1





As ~p ∈ ker Hσ, we deduce that

prσr = −
r−1
∑

i=0

piσi

= −
r−1
∑

i=0

r
∑

k=1

piωkα
d−i
k β i

k = −
r
∑

k=1

ωk

r−1
∑

i=0

piα
d−i
k β i

k

= −
r
∑

k=1

ωk

�

p(αk,βk)− prα
d−r
k β r

k

�

= pr

r
∑

k=1

ωkα
d−r
k β r

k

and pr 6= 0 implies that σr =
∑r

k=1ωkα
d−r
k β r

k . By induction on j, using the relations
prσr+ j = −

∑r−1
i=0 piσi+ j, we prove similarly that

σr+ j =
r
∑

k=1

ωkα
d−r− j
k β

r+ j
k
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for j = 0, . . . , d − r. This implies that ψ=
∑r

k=1ωk(αk x0 + βk x1)d . �

1.2.2 Apolarity

Definition 1.2.4 (Apolar product) For f =
∑

|α|=d fα
�d
α

�

xα, g =
∑

|α|=d gα
�d
α

�

xα ∈K[x ]d ,

〈 f , g〉d =
∑

|α|=d

fα gα

�

d
α

�

.

Proposition 1.2.5 〈 f , (ξ0 x0 + · · ·+ ξn xn)d〉d = f (ξ0, . . . ,ξn).

Given an homogeneous polynomial ψ ∈ Sd , we can define an element ψ? of the dual
space Sd

? = HomK(Sd ,K) as follows

ψ? : Sd →K
p 7→ 〈ψ, p〉d

By Proposition 1.2.5, (ξ0 x0 + · · ·+ ξn xn)d
?

is the evaluation

eξ : Sd →K
p 7→ p(ξ0, . . . ,ξn)

Since the map ψ ∈ Sd → ψ? ∈ Sd
? is linear, the tensor decomposition problem can be

reformulated as follows:

Problem 1.2.6 (Dual symmetric tensor decomposition)

Given ψ? ∈ Sd
?, find a decomposition of ψ of the form

ψ? =
r
∑

i=1

ωieξi

for ξi = (ξi,0,ξi,1, . . . ,ξi,n) distinct in P(K
n+1
), ωi ∈K.

1.2.3 Secants of Veronese variety

Let us give here a geometric view on this decomposition problem.
The evaluation eξ ∈ Sd

? at a point ξ ∈ K
n+1

is represented in the dual basis of the
monomial basis by the vector (ξα)|α|=d obtained by evaluation at ξ of the monomials

xα which form a basis of Sd . The set of these vectors for non-zero vectors ξ ∈ K
n+1

form a projective variety called the Veronese variety and denoted hereafter V n
d . This

projective variety is defined by the equations xαxβ − xα′ xβ ′ = 0 for α,α′,β ,β ′ ∈ Nn+1,
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Figure 1.1: A (green) point on the 3th secant of V 1
3 ⊂ P

3, which is on the (blue) plane
spanned by 3 (orange) points of the (red) curve V 1

3 .

|α|= |β |= |α′|= |β |= d and α+β = α′+β ′, where (xα)|α|=d are the variables associated
to the dual basis of the monomial basis. These equations are 2 × 2 minors of Hankel
matrices (see Section 4.1), defining Hankel operators of rank 1.

The dualψ∗ of a tensor, which decomposes asψ? =
∑r

i=1ωieξi
corresponds to a point

in P(Sd
?), which is in the linear span of the evaluations [eξi

] ∈ V n
d , i = 1, . . . , r. Let

So
r (V

n
d ) = {[ψ

?] ∈ P(Sd
?) |ψ? =

r
∑

i=1

ωiei with [ei] ∈ V n
d ,ωi ∈K}

be the set of points in the linear span of r distinct points of V n
d . The closure Sr(V n

d ) =
So

r (V
n

d ) is called the r th-secant of V n
d .

1.3 Multilinear tensor decomposition

A multilinear tensor τ is an element of a space E1 ⊗ · · · ⊗ Em where Ei are K vector
spaces of dimension ni + 1. Fixing bases of Ei, τ is represented by a multi-index array
(τi1,...,im)0¶il¶nl

∈ K(n1+1)×···×(nm+1). Equivalently, τ can be represented by a multilinear
polynomial

τ(x 1, . . . , x m) =
∑

0¶il¶nl

t i1,...,tm
x1,i1 · · · xm,im

in the variables x j = (x j,0, . . . , x j,n j
), j = 1, . . . , m. Let Sn1,...,nm

1,...,1 be the vector space of
multilinear polynomials in the variables x 1, . . . , x m with coefficients in K.

Problem 1.3.1 (Multilinear tensor decomposition)

Given a multilinear tensor

τ(x 1, . . . , x m) =
∑

0¶il¶nl

t i1,...,tm
x1,i1 · · · xm,im
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find vectors ξi
1 ∈K

n1+1
, . . . ,ξi

m ∈K
nm+1

such that

τ(x 1, . . . , x m) =
r
∑

i=1

m
∏

j=1

(ξi
j,0 x j,0 + · · ·+ ξi

j,n j
x j,n j
)

This decomposition means that τ is the sum of the tensor products of the vectors ξi
j

in E1 ⊗ · · · ⊗ Em:

τ=
r
∑

i=1

ξi
1 ⊗ · · · ⊗ ξ

i
m.

The minimal number of terms in such a decomposition is called the rank of τ.
Notice that we don’t put a weight ωi in front of each term ξi

1 ⊗ · · · ⊗ ξ
i
m since it can

be integrated in the term by scaling one of the vectors ξi
l by ωi. However, in some cases,

for instance when the vectors ξi
l are normalized, we will introduce these weights in the

decomposition: τ=
∑r

i=1ωi ξ
i
1 ⊗ · · · ⊗ ξ

i
m.

1.3.1 Apolarity

Similarly to symmetric tensors, an apolar product can be defined on multilinear tensors
as follows.

Definition 1.3.2 For allτ=
∑

0¶il¶nl
τi1,...,im x1,i1 · · · xm,im , τ′ =

∑

0¶il¶nl
τ′i1,...,im

x1,i1 · · · xm,im ∈
Sn1,...,nm

1,...,1 ,

〈τ,τ′〉=
∑

0¶il¶nl

τi1,...,imτ
′
i1,...,im

.

Proposition 1.3.3 For τ ∈ Sn1,...,nl
1,...,1 , ξ j = (ξ j,0, . . . ,ξ j,n j

) ∈K
n j+1

for j = 1, . . . , m,

〈τ,
m
∏

j=1

(ξ j,0 x j,0 + · · ·+ ξ j,m x j,m)〉= τ(ξ1, . . . ,ξm).

1.3.2 Dual tensor decomposition

For a tensor ψ = ξ1 ⊗ · · · ⊗ ξm of rank 1 or equivalently a multilinear polynomial ψ =
∏m

j=1(ξ j,0 x j,0 + · · ·+ ξ j,m x j,m), and any f ∈ Sn1,...,nm
1,...,1 we have

〈ψ, f 〉= f (ξ1, . . . ,ξm)

Therefore, ψ? : f ∈ Sn1,...,nm
1,...,1 → 〈ψ, f 〉 ∈K is such that

ψ? = eξ on Sn1,...,nm
1,...,1

where ξ= (ξ1, . . . ,ξm) ∈Kn1+···+nm .
Using this duality, we can reformulation the decomposition problem as follows:
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Given ψ? ∈ (Sn1,...,nm
1,...,1 )?, find a decomposition of ψ? of the form

ψ? =
r
∑

i=1

ωieξi

for distinct directions ξi ∈K
n1+···+nm and ωi ∈K \ {0}.

1.3.3 Secant of Segre variety

The set of tensors ψ = ξ1 ⊗ · · · ⊗ ξm 6= 0 of rank 1 is an algebraic variety of Pn1+···+nm−1,
called the Segre variety. We denote it by S n1,...,nm .

Decomposing a multilinear tensor τ as

τ=
r
∑

i=1

ωi ξ
i
1 ⊗ · · · ⊗ ξ

i
m

means we write τ as an point of the linear span of r points ξi = ξi
1⊗ · · ·⊗ξ

i
m ∈ S

n1,...,nm .
The closure of the points in the linear span of r linearly indenpendent points ξi ∈

S n1,...,nm is called the r-th secant variety of S n1,...,nm .

1.4 Simultaneous decomposition

The problem of simultaneous decomposition of a set of tensors consists in finding com-
mon points, such that all the tensors can be decomposed in terms of these points. We
illustrate it here for symmetric tensors.

Problem 1.4.1 (Simultaneous symmetric tensor decomposition)

Given symmetric tensors ψ1, . . . ,ψm of order d1, . . . , dm, find a simultaneous de-
composition of the form

ψl =
r
∑

i=1

ωi,l(ξi,0 x0 + ξi,1 x1 + · · ·+ ξi,n xn)
dl

where ξl = (ξl,0, . . . ,ξl,n) span distinct lines in K
n+1

and ωi,l ∈K for l = 1, . . . , m.

1.4.1 Binary forms

A method similar to Sylvester method can be applied for the simultaneous decomposition
of binary forms, based on the following proposition (similar to Theorem 1.2.3).
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Proposition 1.4.2 Let ψl =
∑dl

i=0σ1,i

�dl
i

�

x dl−i
0 x i

1 ∈K[x0, x1]dl
for l = 1, . . . , m.

If there exists a polynomial p(x0, x1) := p0 x r
0 + p1 x r−1

0 x1 + · · ·+ pr x r
1 such that































σ1,0 σ1,1 . . . σ1,r

σ1,1 σ1,r+1
...

...
σ1,d1−r . . . σ1,d1−1 σ1,d1

...
...

σm,0 σm,1 . . . σm,r

σm,1 σr+1
...

...
σm,dm−r . . . σm,dm−1 σm,dm







































p0

p1
...

pr









= 0

and of the form p = c
∏r

k=1(βk x0 −αk x1) with (αk,βk) ∈ K2 pairewise distinct directions,
then

ψl =
r
∑

i=1

ωi,l(αl x0 + βl x1)
dl

for ωi,l ∈K and l = 1, . . . , m.

Proof. We use the same proof as for Theorem 1.2.3 applied to the Hankel block associ-
ated to σi (for i = 1, . . . , m). �

1.5 Sparse interpolation

Given a black-box polynomial function f (x )

find r ∈ N,ωi ∈ C,αi ∈ Nn such that f (x ) =
∑r

i=1 ωi xαi .

Example 1.5.1 Consider the polynomial f (x1, x2) = x33
1 x12

2 − 5 x1 x25
2 + 101.

Let us choose ϕ1 = e
6iπ
100 ,ϕ2 = e

14iπ
100 . We evaluate f at the points (ϕk

1 ,ϕk
2) for k = 0, . . . , d

and get the sequence

σk = f (ϕk
1 ,ϕk

2) = (ϕ
33
1 ϕ

12
2 )

k − 5(ϕ1ϕ
25
2 ) + 101= ξk

1 − 5ξk
2 + 101ξk

3,
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where ξ1 = ϕ33
1 ϕ

12
2 = e47 2π

100 , ξ2 = ϕ1ϕ
25
2 = e78 2π

100 , ξ3 = 1. We compute a non-zero element
[p0, p1, . . . , pr] in the kernel of the matrix

Hσ =









σ0 σ1 . . . σr

σ1 σr+1
...

...
σd−r . . . σd−1 σd









for r = 3 and d ≥ 5. The roots of the polynomial p(x) := p0 + p1 x + · · · + pr x r are
ξ1,ξ2,ξ3 ∈ C. Computing mi = −i100

2π log(ξi), we get

m1 = 47= 3× 33+ 7× 12− 100× 7
m2 = 78= 3× 1+ 7× 25− 100× 1
m3 = 0

Decomposing mi = 3 ai+5 bi+100 ci modulo 3×7×100= 2100, we recover the exponents
of the terms of f : (33, 12), (1, 25), (0, 0).

The coefficients ωi are recovered by solving the system




1 1 1
ξ1 ξ2 ξ3

ξ2
1 ξ2

2 ξ2
3









ω1

ω2

ω3



=





σ0

σ1

σ2





The solution of this system yields (ω1,ω2,ω3) = (1,−5,101).
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In this chapter, we consider polynomials and series with coefficients in a field K of
characteristic 0. In the applications, we are going to take K= C or K= R.

We are going to use the following notation: K[x1, . . . , xn] = K[x ] = R is the ring of
polynomials in the variable x1, . . . , xn with coefficients in the field K, K[[y1, . . . , yn]] =
K[[y]] is the ring of formal power series in the variables y1, . . . , yn with coefficients in
K.

The dual of the ring of polynomials is

K[x ]? = {σ :K[x ]→K linear}= HomK(K[x ],K).

Given σ ∈ K[x ]?, p ∈ K[x ], we denote by 〈σ | p〉 the value of σ applied to p. The
elements in K[x ]? will also be called linear functionals on K[x ].

For any σ ∈K[x ]?, the inner product associated to σ on K[x ] is defined as follows:

K[x ]×K[x ] → K
(p, q) 7→ 〈p, q〉σ := 〈σ | p q〉.

The dual space K[x ]? has a natural structure of K[x ]-module, defined as follows:
∀σ ∈K[x ]?,∀p, q ∈K[x ],

〈p ?σ | q〉 = 〈σ | p q〉.

The operator σ ∈K[x ]? 7→ p?σ ∈K[x ]? is, by definition, the transpose or adjoint of the
multiplication by p: q ∈K[x ] 7→ p q ∈K[x ].

15
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We check that ∀σ ∈ K[[y]],∀p, q ∈ K[x ], (pq) ? σ = p ? (q ? σ). See e.g. [Ems78],
[EM07a] for more details.

2.1 Sequences

To describe a linear functional σ ∈ K[x ]?, it is enough to know it on a basis of K[x ]. A
natural basis is the monomial basis (xα)α∈Nn . The linear functional σ is uniquely defined
by the sequence

(〈σ | xα〉)α∈Nn .

The values σα := 〈σ | xα〉 for α ∈ Nn are called the moments of σ.
Given a polynomial p =

∑

α∈A pαxα ∈K[x ] with A⊂ Nn finite, the value of σ applied
to p is by linearity

〈σ | p〉=
∑

α∈A

pασα.

This allows us to identify K[x ]? with the vector space of multi-index sequences KN
n

via
the isomorphism:

i0 :K[x ]? → KN
n

(2.1)

σ 7→ (〈σ | xα〉)α∈Nn

More generally, choosing a point ζ ∈Kn and monomials ((x−ζ)α)α∈Nn as a basis ofK[x ],
we define the isomorphism iζ : σ ∈K[x ]? 7→ (〈σ | (x − ζ)α〉)α∈Nn .

The structure of K[x ]-module of K[x ]? in this representation is given by shift oper-
ators. Let Si : (σα)α∈Nn ∈ KN

n 7→ (σei+α)α∈Nn ∈ KN
n

be the shift operator by ei, where
(ei)i=1,...,n is the canonical basis of Nn. Then, we have

x i ?σ = (〈σ | x i x
α〉)α∈Nn = (〈σ | x ei+α〉)α∈Nn = Si(σ).

More generally, for p ∈K[x ], p ?σ = p(S1, . . . ,Sn)(σ).
For p =

∑

β pβ x β ∈ K[x ] and σ =
∑

α∈Nn σα
yα

α! ∈ K[[y]], the series expansion of
p ?σ is p ?σ = (ρα)α∈Nn with ∀α ∈ Nn,

ρα =
∑

β

pβσα+β .

Identifying K[x ] with the set `0(KN
n
) of sequences p = (pα)α∈Nn of finite support (i.e. a

finite number of non-zero terms), we see that p ?σ is the cross-correlation sequence of p
and σ.
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2.2 Taylor series

Assume here that char K = 0. Elements in K[x ]? can also be represented by formal
power series, using following the natural isomorphism between the ring of formal power
series and the dual of K[x ]:

K[[y1, . . . , yn]]×K[x1, . . . , xn] → K

(yα, x β) 7→ 〈yα | x β〉=
§

α! ifα= β
0 otherwise .

Namely, if σ ∈ HomK(K[x ],K) = R∗ is an element of the dual of K[x ], it can be repre-
sented by the series:

ι0 :K[x ]? → K[[y]] (2.2)

σ 7→ σ(y) =
∑

α∈Nn

σ(xα)
yα

α!
,

so that we have 〈σ(y)|xα〉 = σ(xα). The map σ ∈ R∗ 7→
∑

α∈Nn σ(xα)
yα

α! ∈ K[[y]] is an
isomorphism and any series σ(y) =

∑

α∈Nn σα
yα

α! ∈K[[y]] can be interpreted as a linear
form

p =
∑

α∈A⊂Nn

pαxα ∈K[x ] 7→ 〈σ | p〉=
∑

α∈A⊂Nn

pασα.

Any linear form σ ∈ R? is uniquely defined by its coefficients σα = 〈σ | xα〉 for α ∈ Nn,
which are called the moments of σ.

From now on, we identify the dual R? = HomK(K[x ],K) with K[[y]]. Using this
identification, the dual basis of the monomial basis (xα)α∈Nn is

�

yα

α!

�

α∈Nn
.

If K is a subfield of a field L, we have the embedding K[[y]] ,→ L[[y]], which allows
to identify an element of K[x ]∗ with an element of L[x ]∗.

The truncation of an elementσ(y) =
∑

α∈Nn σα
yα

α! ∈K[[y]] in degree d is
∑

|α|¶d σα
yα

α! .
It is denoted σ(y) + O (y)d+1, that is, the class of σ modulo the ideal (y1, . . . , yn)d+1 ⊂
K[[y]].

The structure K[x ]-module of K[x ]? is given as follows.

Lemma 2.2.1 ∀p ∈K[x ],∀σ ∈K[[y]], p(x ) ?σ(y) = p(∂y1
, . . . ,∂yn

)(σ).

Proof. We first prove the relation for p = x i (i ∈ [1, n]) and σ = yα (α ∈ Nn). Let
ei = (0, . . . , 0, 1, 0, . . . , 0) be the exponent vector of x i. ∀β ∈ Nn and ∀i ∈ [1, n], we have

〈x i ? yα|x β〉 = 〈yα|x i x
β〉= α! if α= β + ei and 0 otherwise

= αi〈yα−ei |x β〉.

with the convention that yα−ei = 0 if αi = 0. This shows that x i ? yα = αi y
α−ei = ∂yi

(yα).
By transitivity and bilinearity of the product ?, we deduce that ∀p ∈K[x ],∀σ ∈K[[y]],
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p(x ) ?σ(y) = p(∂y1
, . . . ,∂yn

)(σ). �

This property can be useful to analyze the solution of partial differential equations.
Let p1(∂y1

, . . . ,∂yn
), . . . , ps(∂y1

, . . . ,∂yn
) ∈K[∂1, . . . ,∂n] be a set of partial differential poly-

nomials with constant coefficients ∈K. The set of solutions σ ∈K[[y]] of the system

p1(∂y1
, . . . ,∂yn

)(σ) = 0, . . . , ps(∂y1
, . . . ,∂yn

)(σ) = 0

is in correspondence with the elements σ ∈ (p1, . . . , ps)⊥, which satisfy pi ?σ = 0 for i =
1, . . . , s (see Theorem 3.4.4). The variety V (p1, . . . , pn) ⊂ K

n
is called the characteristic

variety and I = (p1, . . . , pn) the characteristic ideal of the system of partial differential
equations.

2.2.1 Polynomial-Exponential series

Among the elements of K[x ]? ≡K[[y]], we have the evaluations at points of Kn:

Definition 2.2.2 The evaluation at a point ξ= (ξ1, . . . ,ξn) ∈Kn is:

eξ :K[x1, . . . xn] → K
p(x ) 7→ p(ξ)

It corresponds to the series:

eξ(y) =
∑

α∈Nn

ξα
yα

α!
= eξ1 y1+···+ξn yn = e〈ξ,y〉.

Using this formalism, the series σ(y) =
∑r

i=1ωieξi
(y) withωi ∈K can be interpreted

as a linear combination of evaluations at the points ξi with coefficients ωi ∈ K, for
i = 1, . . . , r. These series belong to the more general family of polynomial-exponential
series, that we define now.

Definition 2.2.3 Let

P olE x p(y1, . . . , yn) =

¨

σ =
r
∑

i=1

ωi(y)eξi
(y) ∈K[[y]] | ξi ∈Kn,ωi(y) ∈K[y]

«

be the set of polynomial-exponential series. The polynomials ωi(y) are called the weights of
σ and ξi the frequencies.

Notice that the product of yαeξ(y) with a monomial x β ∈ C[x1, . . . xn] is given by

〈yαeξ(y) | x β〉 =
β!

(β −α)!
ξ
β−α
= ∂ α1

x1
· · ·∂ αn

xn
(x β)(ξ) ifαi ¶ βi for i = 1, . . . , n(2.3)

= 0 otherwise .



2.3. DUAL SERIES 19

Therefore an element σ =
∑r

i=1ωi(y)eξi
(y) of P olE x p(y) can also be seen as a sum

of polynomial differential operators ωi(∂ ) “at” the points ξi, that we call infinitesimal
operators: ∀p ∈K[x ], 〈σ|p〉=

∑r
i=1 ωi(∂ )(p)(ξ).

Lemma 2.2.4 The series yαi, jeξi
(y) for i = 1, . . . , r and j = 1, . . .µi with αi,1, . . . ,αi,µi

∈ Nn

and ξi ∈Kn pairwise distinct are linearly independent.

Proof. Suppose that there exist wi, j ∈ K such that σ(y) =
∑r

i=1

∑µi

j=1ωi, j y
αi, jeξi

(y) = 0
and let ωi(y) =

∑µi

j=1ωi, j y
αi, j . Then ∀p ∈ K[x ], p ? σ = 0 =

∑r
i=1 p(ξi + ∂y)(ωi)eξi

(y).
If the weights ωi(y) ∈ K are of degree 0, by choosing for p an interpolation polynomial
at one of the distinct points ξi, we deduce that ωi = 0 for i = 1, . . . , r. If the weights
ωi(y) ∈ K are degree ¾ 1, by choosing p = l(x )− l(ξi) ∈ K[x ] for a separating polyno-
mial l of degree 1 (l(ξi) 6= l(ξ j) if i 6= j), we can reduce to a case where at least one of
the non-zero weights has one degree less. By induction on the degree, we deduce that
ωi(y) = 0 for i = 1, . . . , r. This proves the linear independency of the series yαi, jeξi

(y)
for any αi,1, . . . ,αi,µi

∈ Nn and ξi ∈Kn pairwise distinct. �

Lemma 2.2.5 ∀p ∈K[x ],∀ω ∈K[[y]], ξ ∈Kn, p(x )?(ω(y)eξ(y)) = p(ξ1+∂y1
, . . . ,ξn+

∂yn
)(ω(y))eξ(y).

Proof. By Lemma 2.2.1, x i ? (ω(y)eξ(y)) = ∂yi
(ω)(y)eξ(y) + ξiω(y)eξ(y) = (ξi +

∂yi
)(ω(y))eξ(y) for i = 1, . . . , n. We deduce that the relation is true for any polynomial

p ∈K[x ] by repeated multiplications by the variables and linear combination. �

2.3 Dual series

For K of any characteristic, another representation of elements of K[x ]? as formal power
series, is based on the following isomorphism:

ι0 :K[x ]? → K[[z]] (2.4)

σ 7→ σ(z) =
∑

α∈Nn

〈σ | zα〉zα

where z = (z1, . . . , zn) is a set of new variables, Using the following pairing:

K[[z1, . . . , zn]]×K[x1, . . . , xn] → K

(zα, x β) 7→ 〈zα | x β〉=
§

1 ifα= β
0 otherwise .

we have, for any p =
∑

α∈A⊂Nn pαxα with A finite and any σ ∈K[x ]?,

〈σ(z) | p〉=
∑

α∈A

σα pα.
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In this representation, (zα)α∈Nn is the basis of K[x ]? dual to the monomial basis (xα)α∈Nn

of K[x ].
The map, which associates to the sequence (σα)α∈Nn , the formal power eries σ(z) =

∑

α∈Nn σα zα is the Z-transform of the sequence (σ(xα))α∈Nn [enc16]. It corresponds to the
embedding in the ring of divided powers (zα = yα

α! ) [Eis94][Sec. A 2.4], [IK99][Appendix
A]. It allows to extend the duality properties to any field K, which is not of characteristic
0.

The transformation of the series
∑

α∈Nn σαzα ∈ K[[z]] into the series
∑

α∈Nn σα
yα

α! ∈
K[[y]] is known as the Borel transform [enc16].

In this representation, the structure of K[x ]-module of K[x ]? is described as follow.
For α,β ∈ Nn, we have xα ? zβ = π+(zβ−α) where π+ is projection on the formal power
series with positive exponents, which are spanned by the monomials zα with α ∈ Nn. For

α ∈ Zn, π+(zα) =
§

zα if α ∈ Nn,
0 otherwise.

More generally, for any p ∈K[x ],σ ∈K[x ]?,

p ?σ = π+(p(z
−1
1 , . . . , z−1

n )σ(z)).

In this representation, zi plays the role of the inverse of x i. This explains the terminology
of inverse system, introduced in [Mac16].

With this formalism, the variables x1, . . . , xn act on the series in K[[z]] as shift oper-
ators:

x i ?

�

∑

α∈Nn

σαzα
�

=
∑

α∈Nn

σα+ei
zα

where e1, . . . , en is the canonical basis of Nn. Therefore, for any p1, . . . , pn ∈ K[x ], the
system of equations

p1 ?σ = 0, . . . , pn ?σ = 0

corresponds to a system of difference equations on σ ∈K[[z]].

2.3.1 Rational series

In this setting, the evaluation eξ at a point ξ ∈Kn is represented inK[[z]] by the rational
fraction 1

∏n
j=1(1−ξ jz j)

. The series yβeξ ∈K[[y]] corresponds to the series of K[[z]]

∑

α∈Nn

(α+ β)!
α!

ξαzα+β = β!zβ
∑

α∈Nn

�

α+ β
β

�

ξαzα =
β!zβ

∏n
j=1(1− ξ jz j)1+β j

.

The reconstruction of truncated series consists then in finding points ξ1, . . . ,ξr ′ ∈Kn and
finite sets Ai of coefficients ωi,α ∈K for i = 1, . . . , r ′ and α ∈ Ai such that

∑

α∈Nn

σαzα =
r ′
∑

i=1

∑

α∈Ai

ωi,αzα
∏n

i=1(1− ξi, jz j)1+α j
=

n
∏

i=1

z̄ j

r ′
∑

i=1

∑

α∈Ai

ωi,α
∏n

i=1(z̄ j − ξi, j)1+α j
(2.5)
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where z̄ j = z−1
j .

In the univariate case, this reduces to computing polynomials ω(z),δ(z) =
∏r ′

i=1(1−
ξiz)µi ∈K[z] with deg(ω)< deg(δ) =

∑

i µi = r such that

∑

k∈N

σkzk =
w(z)
δ(z)

.

The decomposition can thus be computed from the Padé approximant of order (r − 1, r)
of the sequence (σk)k∈N (see e.g. [vzGG13][chap. 5]).

Unfortunately, this representation in terms of Padé approximant does not extend so
nicely to the multivariate case. The series σ =

∑

α∈Nn σαzα with a decomposition of the

form (2.5) correspond to the series
∑

α∈Nn σαz−α, which is rational of the form z1p(z)
∏

qi(zi)
with

a splitable denominator where deg(qi)¾ 1 are univariate polynomials (see e.g. [Pow82],
[Bar84]). Though Padé approximants could be computed in this case by “separating” the
variables (or by relaxing the constraints on the Padé approximants [Cuy99]), the rational
fraction z1p(z)

∏

qi(zi)
is mixing the coordinates of the points ξ1, . . . ,ξr ′ ∈ Kn and the weights

ωi,α.
As the duality between multiplication and differential operators is less natural in

K[[z]], we will use hereafter the identification (2.2) of R∗ with K[[y]], when K is of
characteristic 0.

2.4 Inverse systems

For a vector space V ⊂K[x ], let V⊥ = {σ ∈K[x ]? | 〈σ | v〉= 0,∀v ∈ V}. Similarly, for a
vector space D ⊂K[x ]?, D⊥ = {p ∈K[x ] | 〈δ | p〉= 0,∀δ ∈ D}.

The set of formal power series K[[y]] is a topological space for the m-adic topol-
ogy where m = (y1, . . . , yn). The dual space K[x ]?, equipped with topology of simple
convergence is also a topological space. For these topologies, the isomorphism (2.2) be-
tween K[[y]] and K[x ]? is an isomorphism of topological vector spaces. In particular,
D ⊂K[x ]? is closed iff D⊥⊥ = D.

Given an ideal I ⊂ K[x ], stable by multiplication by x i ∈ K[x ], i = 1, . . . , n, the or-
thogonal I⊥ is stable by the transpose multiplication, which is the derivation (see Lemma
2.2.1):

∀σ ∈ I⊥, i = 1, . . . , n, x i ?σ = ∂yi
σ ∈ I⊥.

Thus, the map I ⊂ K[x ] 7→ I⊥ ⊂ K[[y]] defines a correspondence between the ideals I
of K[x ] and the vector spaces of K[[y]] which are closed for the m-adic topology and
stable by derivation with respect to yi. See e.g. [Ems78] for more details.

This leads to the following definitions:

Definition 2.4.1 For a subset D ⊂ K[x ]?, the inverse system generated by D is the vector
space spanned by the elements p ? δ for δ ∈ D, p ∈ R.
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For D ⊂ K[[y]], the inverse system generated by D is the vector space spanned by the
elements in D and all their derivatives.

For ω1, . . . ,ωm ∈K[y], we denote by D(ω1, . . . ,ωm) the inverse system of ω1, . . . ,ωm,
generated by ωi and all the derivatives ∂ αy (ωi), α ∈ Nn, i = 1, . . . , m. Let µ(ω1, . . . ,ωm)
denote its dimension.

Lemma 2.4.2 For ω ∈K[y] and ξ= (ξ1, . . . ,ξn) ∈Kn,

D(ωeξ(y)) = D(ω)eξ

Proof. We have, for i = 1, . . . , n, ∂yi
(ωeξ(y)) = ∂yi

(ω)eξ + ξiωeξ ∈ D(ω)eξ(y). This
shows, on one hand, that D(ωeξ(y)) ⊂ D(ω) eξ. Since ∂yi

(ω) eξ = ∂yi
(ωeξ)−ξiω eξ, this

shows on the other hand, that D(ω)eξ ⊂ D(ωeξ) and the equality. �

Example 2.4.3 Let I = ((x1 − 1)2, (x2 − 1)2) ⊂K[x1, x2]. Then,

I⊥ = 〈e(1,1), y1e(1,1), y2e(1,1), y1 y2 e(1,1)〉= D(y1 y2 e(1,1)) = D(y1 y2)e(1,1).

and µ(y1 y2) = 4. This is the multiplicity of the unique point (1, 1) defined by I.
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In this section, we recall the properties of Artinian algebras. Let I ⊂K[x ] be an ideal
and let A =K[x ]/I be the associated quotient algebra.

Definition 3.0.4 The quotient algebraA is artinian if dimK(A )<∞.

Notice that if K is a subfield of a field L, we denote by AL = L[x ]/IL = A ⊗ L
where IL = I ⊗L is the ideal of L[x ] generated by the elements in I . As the dimension
does not change by extension of the scalars, we have dimK(K[x ]/I) = dimL(L[x ]/IL) =
dimL(AL). In particular, A is artinian if and only if AK̄ is artinian, where K̄ is the
algebraic closure. For the sake of simplicity, we are going to assume hereafter that K is
algebraically closed.

3.1 Univariate polynomials

Let us analyze first, the ring R = K[x] of univariate polynomials in the variable x and
coeficient in K. Let I be the ideal of R generated by the polynomial f = fd x d + · · ·+ f0

of degree d ( fd 6= 0).
The vector spaceA =K[x]/( f ) is of dimension d, and admit as basis (1, x , . . . , x d−1).
Assume that the field K is algebraically closed and that the roots of f are simple:

f = fd

∏d
i=1(x − ζi), with ζi 6= ζ j si i 6= j.

23
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Let Mx be the operator of multiplication by x inA :

Mx :A → A
a 7→ a x .

The matrix of Mx in the basis (1, x , . . . , x d−1) is the compagnon matrix

Mx =











0 · · · 0 − f0
fd

1
...

...
...

. . . 0
...

0 1 − fd−1
fd











.

The last column of Mx corresponds of the Euclidean division of x d by f . The characteristic
polynomial of Mx is f and the eigenvalues of Mx are the roots ζ1, . . . ,ζd of f . As these
eigenvalues are assumed to be distinct, the matrix Mx is diagonalisable.

Let p be an element of K[x]. The eigenvalues of the multiplication by p in A are
p(ζ1), . . . , p(ζd) since they are the diagonal terms of Mp in the basis of eigenvectors of
Mx . Let us describe this basis of common eigenvectors of the operators Mp, p ∈ K[x].
Let

u i(x) =
d
∏

j=1, j 6=i

� x − ζ j

ζi − ζ j

�

the ith Lagrange interpolation polynomial of f . The elements u i(u i −1), (x −ζi)u i, u i u j

for j 6= i vanish at all the roots of f . Thus they are divisible by f and we have inA ,

u2
i ≡ u i , x u i ≡ ζiu i , u iu j ≡ 0 si i 6= j.

As 1= u1 + · · ·+ ud , we have for any a ∈K[x]

a ≡ a(ζ1)u1 + · · ·+ a(ζd)ud (3.1)

in A . This implies that A ≡ Ku1 ⊕ · · · ⊕Kud . The family u = (u1, . . . , ud) is a basis
ofA . The elements u i are called orthogonal idempotents since they satisfy the relations:
u2

i ≡ u i, u iu j ≡ 0 i f i 6= j. Moreover, as Mx(u i) = x u i ≡ ζiu i and u i is an eigenvector
of Mx for the eigenvalue ζi.

Let us consider now the dualA ? ofA , that is, the vector space of linear forms on the
vector spaceA . It is a vector space of dimension d = dimA . The dual basis of the basis
(1, x , . . . , x d−1) of A is denoted d = (d0, . . . ,dd−1). The decomposition of an element
σ ∈A ? in this basis is of the form

σ = σ(1)d0 + · · ·+σ(x d−1)dd−1.
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Let p ∈ K[x] and r = r0 + · · ·+ rd−1 x d−1 its representative in the quotient algebra A ,
that is, the remainder in the Euclidean division of f by p: p = f q + r with deg(r) < d.
For σ ∈A ?, we have

σ(p) = σ(r) = r0σ(1) + · · ·+ rd−1σ(x
d−1).

Among the elements ofA ?, we have the evaluations eζ : p 7→ p(ζ) at the roots σi of
f . The identity (3.1) shows that e = (eζ1

, . . . , eζd
) is the basis of A ? dual to the basis u

ofA .
The transpose M t

x of the operator on multiplication Mx is by definition

M t
x :A ? → A ?

σ 7→ σ ◦Mx .

The matrix of M t
x in the basis d of A ? is tthe transpose of the matrix of Mx in the basis

(1, x , . . . , x d−1) ofA .
As for all a ∈A ,

M t
x(eζi
)
�

(a) = eζi
(x a) = (ζieζi

)(a),

we have M t
x(eζi
) = ζieζi

and eζi
is an eigenvector of M t

x for the eigenvalue ζi. This implies
that for all p ∈A , eζi

is an eigenvector of M t
p for the eigenvalue p(ζi). The operators M t

p
for p ∈K[x] share a family of common eigenvectors.

We are going to see that many of these properties generalize to Artinian algebra as-
sociated to polynomials in several variables.

3.2 Algebraic structure

A classical result states that the quotient algebra A = K[x ]/I is Artinian (i.e. of finite
dimensional), if and only if, VK̄(I) is finite, that is, I defines a finite number of (isolated)
points in K̄n (see e.g. [CLO92][Theorem 6] or [EM07b][Theorem 4.3]). Moreover, we
have the following structure theorem (see [EM07b][Theorem 4.9]):

Theorem 3.2.1 LetA =K[x ]/I be an artinian algebra of dimension r defined by an ideal
I . Then we have a decomposition into a direct sum of subalgebras

A =Aξ1
⊕ · · · ⊕Aξr′

(3.2)

where

• V (I) = {ξ1, . . . ,ξr ′} ⊂ K̄n with r ′ ¶ r.

• I = Q1 ∩ · · · ∩Q r ′ is a minimal primary decomposition of I where Q i is mξi
-primary

with mξi
= (x1 − ξi,1, . . . , xn − ξi,n).

• Aξi
≡K[x ]/Q i andAξi

· Aξ j
≡ 0 if i 6= j.
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We check that A localized at mξi
is the local algebra Aξi

. The dimension of Aξi
is

the multiplicity of the point ξi in V (I).
The projection of 1 on the sub-algebrasAξi

as

1≡ uξ1
+ · · ·+ uξr′

with uξi
∈ Aξi

yields the so-called idempotents uξi
associated to the roots ξi. By con-

struction, they satisfy the following relations inA , which characterize them:

• 1≡ uξ1
+ · · ·+ uξr′

,

• u2
ξi
≡ uξi

for i = 1, . . . , r ′,

• uξi
uξ j
≡ 0 for 1¶ i, j ¶ r ′ and i 6= j.

3.3 Roots from the algebraic structure

The solutions V (I) = {ξ1, . . . ,ξr ′} can be recovered by linear algebra, from the multi-
plicative structure ofA , using the properties of the following operators:

Definition 3.3.1 Let g be a polynomial inA . The g-multiplication operatorMg is defined
by

Mg : A → A
h 7→ Mg(h) = gh.

The transpose applicationM t
g of the g-multiplication operatorMg is defined by

M t
g : A ∗ → A ∗

σ 7→ M t
g (σ) = σ ◦Mg = g ?σ.

Let B = {b1, . . . , br} be a basis in A and B∗ its dual basis in A ∗. We denote by M B
g

(or simply Mg when there is no ambiguity on the basis) the matrix ofMg in the basis B.
As the matrix (M B

g )
t of the transpose application M t

g in the dual basis B∗ in A ∗ is the
transpose of the matrix M B

g of the applicationMg in the basis B in A , the eigenvalues
are the same for both matrices.

The main property we will use is the following (see e.g. [EM07b]):

Proposition 3.3.2 Let I be an ideal of R=K[x ] and suppose that V (I) = {ξ1,ξ2, . . . ,ξr}.
Then

• for all g ∈ A , the eigenvalues ofMg andM t
g are the values g(ξ1), . . . , g(ξr) of the

polynomial g at the roots with multiplicities µi = dimAx i
.

• The eigenvectors common to allM t
g with g ∈A are - up to a scalar - the evaluations

eξ1
, . . . , eξr

.
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Remark 3.3.3 If B = {b1, . . . , br} is a basis ofA , then the coefficient vector of the evalua-
tion

eξi
=
∑

β∈Nn

ξ
β

i

yβ

β!
+ · · ·

in the dual basis of A ∗ is
�


eξi
|b j

��

β∈B
= [b j(ξi)]i=1...r = B(ξi). The previous proposition

says that if Mg is the matrix ofMg in the basis B ofA , then

M t
g B(ξi) = g(ξi)B(ξi).

If moreover the basis B contains the monomials 1, x1, x2, . . . , xn, then the common eigenvec-
tors of M t

g are of the form v i = c[1,ξi,1, . . . ,ξi,n, . . .] and the root ξi can be computed from
the coefficients of v i by taking the ratio of the coefficients of the monomials x1, . . . , xn by the
coefficient of 1: ξi,k =

v i,k+1

v i,1
. Thus computing the common eigenvectors of all the matrices

M t
g for g ∈ A yield the roots ξi (i = 1, . . . , r). In practice, it is enough to compute the

common eigenvectors of M t
x1

, . . . , M t
xn

, since ∀g ∈K[x ], M t
g = g(M t

x1
, . . . , M t

xn
).

3.4 The dual of an Artinian algebra

The dualA ∗ = HomK(A ,K) ofA =K[x ]/I is naturally identified with the sub-space

I⊥ = {σ ∈K[x ]∗ =K[[y]] | ∀p ∈ I ,σ(p) = 0}

of K[x ]∗ = K[[y]] As I is stable by multiplication by the variables x i, the orthogonal
I⊥ = A ∗ is stable by the derivations d

dyi
. In the case of a primary ideal, the orthogonal

has a simple form [Mac16], [Ems78], [Mou96]:

Proposition 3.4.1 Let Q be a primary ideal for the maximal ideal mξ of the point ξ ∈ Kn

and letAξ =K[x ]/Q. Then

Q⊥ =A ∗
ξ
= Dξ(Q) · eξ(y),

where Dξ(Q) = {ω(y) ∈ K[y] | ∀q ∈ Q,ω(∂1, . . . ,∂n)(q)(ξ) = 0} is the set of differential
polynomials that vanish on Q at the point ξ.

The vector space Dξ(Q) ⊂ K[y] is called the inverse system of Q. As Q is an ideal,
Q⊥ = Dξ(Q) · eξ(y) is stable by the derivations d

dyi
, and so is Dξ(Q).

Lemma 3.4.2 If I =Q1∩· · ·∩Q r ′ is a minimal primary decomposition of an ideal I ⊂K[x ]
withA =K[x ]/I artinian and Q i mξi

-primary, then

A ? = I⊥ =Q⊥1 ⊕ · · · ⊕Q⊥r ′ =A
∗
ξ1
⊕ · · · ⊕A ∗

ξr′

withA ?
ξi
= uξi

?A ?.
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Proof. As I = Q1 ∩ · · · ∩Q r ′ , I⊥ =
∑r ′

i=1 Q⊥i . As Q⊥i ∩Q⊥j = (Q i +Q j)⊥ = (1)⊥ = {0} for
i 6= j, we have the decomposition ofA ? as a direct sum:

A ? = I⊥ =
r ′
⊕

i=1

Q⊥i =
r ′
⊕

i=1

A ?
i

Since
∑r ′

i=1 uξi
≡ 1 inA , any element σ ∈A ∗ decomposes as

σ = uξ1
?σ+ · · ·+ uξr′

?σ. (3.3)

As we have uξi
?σ(Aξ j

) = σ(uξi
Aξ j
) = 0 for i 6= j, we deduce that uξi

?σ ∈A ∗
ξi
=Q⊥i .

The decomposition (3.3) for any σ ∈A ? implies thatA ?
ξi
= uξi

?A ?. �

As we have
Q⊥i = Dξi

(Q i) eξi
⊂ Dξ(I) eξi

⊂ I⊥ ∩ (K[y] eξi
),

we deduce from the previous lemma that Q⊥i = Dξi
(I) eξ where Dξi

(I) is the set of dif-
ferential polynomials that vanish on I at the point ξ. This can be exploited to compute
efficiently the inverse system of a multiple point ξi from the generators of the ideal I (see
e.g. [Mou96]).

From Proposition 3.4.1 and Lemma 3.4.2, we deduce the following result:

Theorem 3.4.3 Assume that K is algebraically closed. Let A be an Artinian algebra of
dimension r with V (I) = {ξ1, . . . ,ξr ′} ⊂ Kn. Let Di = Dξi

(I) ⊂ K[y] be the vector space
of differential polynomials ω(y) ∈ K[y] such that ∀p ∈ I ,ω(∂1, . . . ,∂n)(p)(ξi) = 0. Then
Di is stable by the derivations d

dyi
, i = 1, . . . , n. It is of dimension µi with

∑r ′

i=1µi = r. Any
elements σ ofA ∗ has a unique decomposition of the form

σ(y) =
r ′
∑

i=1

ωi(y)eξi
(y), (3.4)

with ωi(y) ∈ Di ⊂ K[y], which is uniquely determined by values 〈σ|bi〉 for a basis B =
{b1, . . . , br} ofA . Moreover, any element of this form is inA ∗.

Proof. For any polynomialω(y) ∈K[y], such that∀ξ ∈ V (I), ∀p ∈ I ,ω(∂1, . . . ,∂n)(p)(ξ) =
0 ω(∂1, . . . ,∂n)(p)(ξ) = 0, the element ω(y)eξ(y) is in I⊥. Thus an element of the form
(3.4) is in I⊥ =A ∗.

Let us prove that any element σ ∈ A ∗ is of the form (3.4). By the relation (3.3),
σ decomposes as σ =

∑r ′

i=1 uξi
? σ with uξi

? σ ∈ A ∗
ξi
= Q⊥i . By Proposition 3.4.1,

Q⊥i = Dieξi
(y), where Di = Dξi

(Q i) is the set of differential polynomials which vanish
at ξi, on Q i and thus on I . Thus uξi

? σ is of the form uξi
? σ = ωi(y)eξi

(y) with
ωi(y) ∈ Di ⊂ K[y]. By Lemma 2.2.4, its decomposition as a sum of polynomial expo-
nentials σ(y) =

∑r ′

i=1ωi(y)eξi
(y) is unique. This concludes the proof. �
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Theorem 3.4.3 can be reformulated in terms of solutions of partial differential equa-
tions, using the relation between Artinian algebras and polynomial-exponentialsP olE x p.
This duality between polynomials equations and partial differential equations with con-
stant coefficients goes back to [Riq10] and has been further studied and extended for
instance in [Grö], [Ems78], [Ped99], [OP01], [HT04]. In the case of a non-Artinian al-
gebra, the solutions on an open convex domain are in the closure of the set of polynomial-
exponential solutions (see e.g. [Mal56][Théorème 2] or [Hor90][Theorem 7.6.14]).

The following result gives an explicit description of the solutions of partial differ-
ential equations associated to Artinian algebras, as special elements of P olE x p, with
polynomial weights in the inverse systems of the points of the characteristic variety of
the differential system:

Theorem 3.4.4 Let p1, . . . , ps ∈ C[x1, . . . , xn] be polynomials such that C[x ]/(p1, . . . , ps)
is finite dimensional over C. Let Ω ⊂ Rn be a convex open domain of Rn. A function
f ∈ C∞(Ω) is a solution of the system of partial differential equations

p1(∂1, . . . ,∂n)( f ) = 0, . . . , ps(∂1, . . . ,∂n)( f ) = 0 (3.5)

if and only if it is of the form

f (y) =
r
∑

i=1

ωi(y)e
ξi ·y

withVC(p1, . . . , ps) = {ξ1, . . . ,ξr} ⊂ Cn andωi(y) ∈ Di ⊂ C[y]where Di = Dξi
((p1, . . . , ps))

is the space of differential polynomials, which vanish on the ideal (p1, . . . , ps) at ξi.

Proof. By a shift of the variables, we can assume that Ω contains 0. A solution of f of
(3.5) in C∞(Ω) has a Taylor series expansion f (y) ∈ C[[y]] at 0 ∈ Ω, which defines an
element of C[x ]∗. By Lemma 2.2.1, f is a solution of the system (3.5) if and only if we
have p1? f (y) = 0, . . . , ps ? f (y) = 0. Equivalently, f (y) ∈ I⊥ where I = (p1, . . . , ps) is the
ideal of K[x ] generated by p1, . . . , ps. IfA =K[x ]/I is finite dimensional, i.e. Artinian,
Theorem 3.4.3 implies that the Taylor series f (y) is in I⊥, if and only if, it is of the form:

f (y) =
r
∑

i=1

ωi(y)e
ξi ·y (3.6)

with VC(p1, . . . , ps) = {ξ1, . . . ,ξr} ⊂ Cn and ωi(y) ∈ Di = Dξi
(I) ⊂ C[y] where Di is the

space of differential polynomials which vanish on I = (p1, . . . , ps) at ξi. The polynomial-
exponential function (3.6) is an analytic function with an infinite radius of convergence,
which is a solution of the partial differential system (3.5) on Ω. By unicity of the solu-
tion with given derivatives at 0 ∈ Ω,

∑r
i=1ωi(y)eξi ·y coincides with f on all the domain

Ω ⊂ Rn. �

Here is another reformulation of Theorem 3.4.3 in terms of convolution or cross-
correlation of sequences:
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Theorem 3.4.5 Let p1, . . . , ps ∈ C[x1, . . . , xn] be polynomials such that C[x ]/(p1, . . . , ps)
is finite dimensional over C. The generating series of the sequences σ = (σα) ∈ CN

n
which

satisfy the system of difference equations

p1 ?σ = 0, . . . , ps ?σ = 0 (3.7)

are of the form

σ(y) =
∑

α∈Nn

σα
yα

α!
=

r
∑

i=1

ωi(y)e
ξi ·y

withVC(p1, . . . , ps) = {ξ1, . . . ,ξr} ⊂ Cn andωi(y) ∈ Di ⊂ C[y] such that Di = Dξi
((p1, . . . , ps))

is the space of differential polynomials, which vanish on the ideal (p1, . . . , ps) at ξi.

Proof. The sequenceσ is a solution of the system (3.7) if and only ifσ(y) =
∑

α∈Nn σα
yα

α! ∈
I⊥ where I = (p1, . . . , ps) is the ideal ofK[x ] generated by p1, . . . , ps. We deduce the form
of σ(y) ∈ P olE x p(y) from Theorem 3.4.3. �

3.5 Roots from the dual structure

3.5.1 Notations

Let M be the set of monomials in the variables x1, . . . , xn. An element of M is of the
form xα = xα1

1 · · · x
αn
n with α = (α1, . . . ,αn) ∈ Nn. Its degree is |α| = α1 + · · ·+ αn. Let

R=K[x ] be the ring of polynomials in the variables x1, . . . , xn with coefficients in a field
K. For p =

∑

α∈A pα xα with pα 6= 0, A is the support of p and deg(p) =maxα∈A |α|.
For d ∈ N and F ⊂ R, let F¶d (resp. Fd) be the set of polynomials in F of degree ¶ d

(resp. d).
For f ∈ R, let f > be the homogeneous component of f of highest degree. Similarly

for a set S ⊂ R, S> = { f > | f ∈ S}.
For F ⊂ R, let 〈F〉 be the K-vector space spanned by F . Let F+ = F ∪ x1F ∪ · · · xnF

and ∂ F = F+ \ F . For d ∈ N+, let F¶d = {m f | m ∈ M , f ∈ F, deg(m f ) ¶ d} and
Fd = F¶d \ F¶d−1.

A set B ⊂M is connected to 1 if 1 ∈ B and ∀m ∈ B \ {1}, there exists 1 ¶ i ¶ n and
m′ ∈ B, such that m= x i m′.

For F ⊂ R and B ⊂ M , (F |B) is the matrix of coefficients of the polynomials for the
monomials in B.

3.5.2 Truncated normal forms

As in the introduction, let R = C[x1, . . . , xn] be the ring of polynomials in the variables
x1, . . . , xn with coefficients in the field C and take I ⊂ R defining δ <∞ points, counting
multiplicities. This is equivalent to the assumption that dimC(R/I) = δ <∞. A normal
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form, which in [DB04] is also called an ideal projector, is a map characterized by the
following properties.

Definition 3.5.1 (Normal form) A normal form on R w.r.t. I is an R-map N : R → B
where B ⊂ R is a vector space such that

0 I R B 0N

is exact and N|B = idB.

From this definition, it follows that B ' R/I and that the algebraic structure ofA = R/I
is completely determined by N . Since N|B = idB, we have N ◦ N = N and N is a
projector with kernel I and image B.

Example 3.5.2 (Euclidean division) Take R = K[x1], f = f0 + · · · + fd x d
1 with fi ∈ K

and fd 6= 0. By euclidean division, for all p ∈ R there exists a unique polynomial r ∈ R of
degree < d and a unique q ∈ R, such that

p = q f + r.

The remainder r belongs to the vector space B spanned by the monomials 1, . . . , x d−1
1 . The

map N which associates to every polynomial p ∈ R its remainder r = N (p) by euclidean
division by f is such that

0→ ( f )→ R
N
→ B→ 0

is exact. In other words, we have kerN = ( f ), imN = B ∼ R/( f ).

Since we want to find a representation of R/I using numerical linear algebra tech-
niques, we will work with linear maps N that can be represented by a matrix. That is,
we will work with restricted or truncated versions of normal form maps [TMVB18].

Definition 3.5.3 (Truncated normal form) Let B ⊂ V ⊂ R with x i ·B ⊂ V, i = 1, . . . , n. A
Truncated Normal Form (TNF) on V w.r.t. I is a linear mapN : V → B such thatN|B = idB

and kerN = I ∩ V . That is, N is a projector such that

0 I ∩ V V B 0N

is exact.

In the case B is of finite dimension δ, let P : B → Cδ be an isomorphism defining
coordinates on B. Denote N = P ◦ N . The linear map N is of the form N : f ∈ V →
N( f ) = (η1( f ), . . . ,ηδ( f )) ∈ Cδ with ηi ∈ V ∗ ∩ I⊥ = {λ ∈ V ∗ | ∀p ∈ I ∩ V,λ(p) = 0}. It is
given by δ linear forms, which kernel is I ∩V and such that N|B is invertible. Conversely,
a map N : V → Kδ such that ker N = I ∩ V and N|B = P invertible, defines a truncated
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normal form N = N−1
|B ◦N . Such a map N will also be called a truncated normal form on

V , with respect to B.
Let us give conditions under which a projector is the truncated normal form of an

ideal, showing that a truncated normal form is the restriction of a normal form.
We consider B, V ⊂ R such that B+ ⊂ V and N : V → B a projector such that ker N ⊂

I ∩ V . We assume that V is connected to 1.
Let us define the operator of multiplication by the variable x i as

Mi : B −→ B,
b 7→ N(x i · b).

To check that N is a truncated normal form, we use the following set of commutation
polynomials:

Definition 3.5.4 For F ⊂ R and B ⊂ R, let CV (F) be the set of polynomials in V which are
of the form

1. x i f with f ∈ F, or

2. x i f − x j f
′ with f , f ′ ∈ F, 1¶ i < j ¶ n.

The set CV (F) is called the set of commutation polynomials of F.

The subset of CV (F) satisfying condition 1 (resp. 2) is denoted C 1
V (F) (resp. C 2

V (F)).
Notice that CV (F) ⊂ 〈F+〉.

For Fi ⊂ R, 0¶ i ¶ d, let

F〈d〉 = 〈 p f | p ∈ R¶l , f ∈ Fd−l〉

The next theorem describes different equivalent conditions for a normal form in de-
gree¶ d. It summarizes results which can be deduced from results in [Mou99], [MT05a],
[MT08].

Theorem 3.5.5 Let B, V ⊂ R such that B+ ⊂ V , V is connected to 1, N : V → B be a
projector on B along K = ker N. Let V0 = 〈1〉, B0 = 〈N(1)〉, and for l ∈ N, Vl+1 = B+l ,
Bl+1 = N(Vl+1) and Kl = ker N ∩ Vl . Then for d ¾ 2 the following points are equivalent:

1. (Mi ◦M j −M j ◦Mi)|Bd−2
= 0 for 1¶ i, j ¶ n;

2. there exists a unique truncated normal form Ñ : R¶d → Bd such that Ñ|Vd
= N|Vd

and
ker Ñ = K〈d〉;

3. K+d−1 ∩ Vd ⊂ Kd;

4. CVd
(Kd−1) ⊂ Kd;
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Proof.
1)⇒ 2) : By construction, we have Vl+1 = B+l ⊂ V , N(B+l ) = Bl+1 so that Mi : Bl → Bl+1.
Let u= N(1) and define

Ñ : R¶d → Bd

p 7→ p(M)(u).

This construction is well defined since it is independent of the order in which we compose
the operators Mi since they are commuting, and u ∈ B0 and since for p ∈ R¶d , we have
p(M)(u) ∈ Bd .

Let us show that Ñ is a projection of R¶d on Bd , which extends N and such that
ker Ñ = K〈d〉.

We first prove by induction on k ∈ N that for b ∈ Vk, Ñ(b) = N(b). For l = 0, V0 = 〈1〉
and Ñ(1) = u = N(1), which shows that the hypothesis is true for l = 0. Let us assume
that the property is true for 0 ¶ l ¶ d. Any b ∈ Bl+1 is of the form b =

∑

i x i b
′
i with

b′i ∈ Bl . Then

Ñ(b) =
∑

i

Mi(b
′
i(M)(u)) =

∑

i

Mi(N(b
′
i)) =

∑

i

N(x i b′i) = N(
∑

i

x i b′i) = N(b)

by the induction hypothesis and since N|Bi
= id|Bi

.
In the next step, we prove that K〈d〉 ⊂ ker Ñ . For k ∈ Kl and p ∈ Rd−l with 0 ¶ l ¶ d,

we have

Ñ(p k) = p(M) ◦ k(M)(u) = p(M)(Ñ(k)) = p(M)(N(k)) = p(M)(0) = 0

since Ñ|Vl
= N|Vl

.
Finally, we prove by induction that R¶d = Bd⊕K〈d〉. For any p ∈ R of degree 1¶ l ¶ d,

there exist p′i ∈ R of degree l − 1 such that p =
∑

i x i p
′
i. We have

p− Ñ(p) =
∑

i

x i(p
′
i − Ñ(p′i)) +

∑

i

x iÑ(p
′
i)− Ñ(x iN(p

′
i)) +

∑

i

Ñ(x i(Ñ(p
′
i)− p′i)).

By induction on the degree, we have (p′i − Ñ(p′i)) ∈ K〈l−1〉. Then
∑

i x i(p′i − Ñ(p′i)) ∈ K〈l〉
and Ñ(

∑

i x i(p′i − Ñ(p′i))) = 0 since K〈l〉 ⊂ ker Ñ . Moreover, bi = Ñ(p′i) ∈ Bl−1, thus
x i bi ∈ B+l−1 = Vl and x i bi − Ñ(x i bi) = x i bi − N(x i bi) ∈ ker N ∩ Vl = Kl .

This shows that p− Ñ(p) ∈ K〈l〉. As for any p ∈ R¶d , p = Ñ(p)+ p− Ñ(p), we deduce
that R¶d = Bd + K〈d〉. As K〈d〉 ⊂ ker Ñ and Ñ|Bd

= id, we have

R¶d = Bd ⊕ K〈d〉,

with K〈d〉 = ker Ñ|R¶d
.

2)⇒ 3) : Since K+d−1 ∩ Vd ⊂ K〈d〉 ∩ Vd ⊂ ker Ñ ∩ Vd = ker N ∩ Vd = Kd since Ñ coincides
with N on Vd .
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3)⇒ 4) : Clear, since C (Kd−1) ⊂ K+d−1 ∩ Vd .
4) ⇒ 1) : Let b ∈ Bd−2, b1 = x i b ∈ Vd−1, b2 = x j b ∈ Vd−1 with 1 ¶ i < j ¶ n, k1 =
b1 − N(b1) ∈ Kd−1 and k2 = b2 − N(b2) ∈ Kd−1. As x i b2 = x j b1 = x i x j b, we have

(Mi ◦M j −M j ◦Mi)(b) = N(x iN(b2))− N(x jN(b1))
= N(x i(b2 − k2)− x j(b1 − k1))
= N(x jk1 − x ik2).

As x jk1 − x ik2 = x iN(b2)− x jN(b1) ∈ B+d−1 = Vd is an element of CVd
(Kd−1), Hypothesis

(4) implies that N(x jk1 − x ik2) = 0. Consequently, (Mi ◦M j −M j ◦Mi)|Bd−2
= 0. �

Theorem 3.5.6 Let B, V ⊂ R such that W := B+ ⊂ V , V is connected to 1 and let N : V → B
be a projector such that K := ker N ⊂ I ∩W. Then the following points are equivalent:

1. (Mi ◦M j −M j ◦Mi) = 0 for 1¶ i, j ¶ n;

2. there exists a unique normal form Ñ : R→ B such that Ñ|W = N|W and ker Ñ = (K);

3. K+ ∩W ⊂ K;

4. CW (K) ⊂ K;

Proof. Apply Theorem 3.5.5 for all d ∈ N. �

Corollary 3.5.7 Let B, V ⊂ R such that W := B+ ⊂ V , V is connected to 1 and let N : V → B
be a truncated normal form with respect to I and K = ker N ∩W. Then there exists a unique
normal form Ñ modulo (K) ⊂ I such that Ñ|W = N.

Proof. Since N is a truncated normal form, ker N = I ∩ V for some ideal I ⊂ R.
CW (K) ⊂ I ∩W = ker N ∩W = K , Theorem 3.5.6(4) implies that there exists a unique
normal form Ñ modulo (K) such that Ñ|W = N and kerN = (K). �

3.5.3 Border basis

Border basis are special types of normal forms associated to sets B of monomials. In
some works like [KR05, KK05, KK06, CM07, Kas11], the set B is finite and stable by
division (called an order ideal). Hereafter we consider a more general case where B =
{x β1 , . . . , x βr} is finite and connected to 1= x β1 .

We take V = 〈B+〉 and B = 〈B〉 and a projector N : V → B.
For any xα ∈ ∂B ,

fα = xα − N(xα) = xα −
∑

xβ∈B

cα,β x β (3.8)
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is an element of K = ker N . Conversely, a family F of polynomials fα of form (3.8) for
xα ∈ ∂B defines a unique projector N : V → B such that N(x β) = x β for x β ∈ B and
N(xα) =

∑

xβ∈B cα,β x β for xα ∈ ∂B . Such a family will be called a rewriting family for
B .

A border basis for B is a rewriting family for B such that R = 〈B〉 ⊕ (F) and the
projection on 〈B〉 along (F) is a normal form.

By Theorem 3.5.6, if any of the following points is satisfied:

• Mi ◦M j −M j ◦Mi = 0 where Mi : b ∈ B 7→ N(x i b) ∈ B.

• 〈F+〉 ∩ V = 〈F〉.

• ∀ f ∈ CV (F), N( f ) = 0.

then N extends to a unique normal form N such that N|V = N and kerN = (F). That is
R= B ⊕ (F) and F is a border basis.

We will not assume that B is known apriori or that the projection is compatible with
a monomial ordering as in [KR05, CM07], since this leads to the construction of Gröb-
ner bases, with well-developed monomial rewriting techniques but also with numerical
instability problems that we want to avoid.

For the sake of simplicity, we restrict the present article to projections compatible with
the usual degree. This is not a conceptual limitation.

So far, border bases have been developed essentially for zero-dimensional ideals, ex-
cept in [CM07] where the projection is compatible with a monomial ordering and thus
leads to Gröbner basis computation.

The main contribution of this paper is to provide a new criteria of border basis for any
projection compatible with the degree on a vector space spanned by a set B of monomials
connected to 1. This criteria which applies to any ideal is based on the persistence and
regularity theorems of G. Gotzmann [Got78].

We describe an algorithm, which exploits a new characterization of border basis up
to a given degree, and proceeds incrementally degree by degree until the regularity cri-
teria is satisfied. This algorithm is an extension of the algorithm in [MT05a] for zero-
dimensional ideals. It is complete and has no possible case of “failure” as the algorithm
for zero-dimensional ideals in [Kas11]. As a byproduct, we obtain the Hilbert polynomial
of the graded part of the ideal and thus the dimension and the degree of the solution set.

Let B ⊂M be a set of monomials connected to 1 and let d ∈ N.
In this section, we assume that we are given a projection π : 〈B+〉¶d → 〈B〉¶d (ie.

satisfying π ◦ π = π) which is compatible with the degree: ∀b ∈ 〈B+〉¶d , deg(π(b)) ¶
deg(b). As π|〈B〉¶d

is the identity map, kerπ is spanned by the elements:

fα = xα −π(xα),α ∈ (∂ B)¶d .

We denote by F this generating set of polynomials of kerπ and call it the rewriting family
of kerπ.



36 CHAPTER 3. ARTINIAN ALGEBRA

Our objective is to characterize the projections π which are the restriction of a pro-
jection π̃ : R→ 〈B〉 such that I := ker π̃ is the ideal generated by kerπ. In such a case,
we have R= 〈B〉 ⊕ I and π̃ is a normal form modulo the ideal I .

The main idea behing border basis techniques is to relate this normal form property
to commutation properties of multiplication operators [Mou99]. We define the operator
of multiplication by x i associated to π as:

Mi : 〈B〉¶d−1 → 〈B〉¶d

b 7→ π(x i b).

As π is compatible with the degree, the image by Mi of an element of degree ¶ k is of
degree ¶ k+ 1 for 0¶ k < d.

For a monomial xα = xα1
1 · · · x

αn
n ∈M of degree ¶ d, we define xα(M) := Mα1

1 ◦ · · · ◦
Mαn

n . It is an operator from 〈B〉¶d−|α| to 〈B〉¶d . We extend this construction by linearity
and for any p ∈ R¶d , we define

p(M) : 〈B〉¶d−deg(p)→ 〈B〉¶d .

Remark 3.5.8 As a border basis in degree¶ d is a border basis in degree¶ k for 0¶ k ¶ d,
this theorem implies that the restriction of π̃ to R¶k is the projection onto 〈B〉¶k along F〈¶k〉.

Remark 3.5.9 We can define the projection π̃ : R¶d → 〈B〉¶d such that for any xα ∈M¶d ,
π̃(xα) = Mα(1) ∈ 〈B〉¶d and we extend it by linearity on R¶d . Any order in the composition
of the operators Mi can be used to define a projection π̃ on a specific monomial of degree
¶ d. For any of these choices, we have a projection such that ∀p ∈ R¶d , p− π̃(p) ∈ F〈¶d〉.

However, if the operators Mi commute in degree¶ d−2, then this projection π̃ is uniquely
defined.

3.5.4 Characterization of TNFs

Given a linear map N : V → Cδ with V ⊂ R a finite dimensional subvector space, what
are the conditions on N , V such that N covers a TNF N w.r.t I?

Also, which subspaces B ⊂ V such that x i ·B ∈ V, i = 1, . . . , n can we identify with R/I?
That is, the map N : V → Cδ might cover different TNFs N : V → B and N ′ : V → B′.
Theorem 3.5.10 gives an answer to these questions.

We consider a 0-dimensional ideal I = ( f1, . . . , fs) ⊂ R generated by s polynomials in
n variables with δ <∞ solutions in Cn, counting multiplicities. For any ideal J ⊂ R and
p ∈ R, we denote (J : p) = {q ∈ R | pq ∈ J} and (J : p∗) = {q ∈ R | ∃k ∈ N s.t. pkq ∈ J}.

Theorem 3.5.10 Let V ⊂ R be a finite dimensional subvector space and let W = { f ∈ V :
x i f ∈ V, i = 1, . . . , n}. Suppose we have a C-linear map N : V → Cδ such that

1. ∃u ∈ V such that u+ I is a unit in R/I ,



3.5. ROOTS FROM THE DUAL STRUCTURE 37

2. ker(N) ⊂ I ∩ V ,

3. N|W is onto Cδ.

Then for any δ-dimensional vector subspace B ⊂W such that N|B is invertible we have:

(i) there is an isomorphism of R-modules B ' R/I ,

(ii) V = B ⊕ (I ∩ V ) and I = (〈ker(N)〉 : u),

(iii) the maps Ni given by
Ni : B −→ Cδ,

b −→ N(x i · b)

for i = 1, . . . , n can be decomposed as Ni = N|B ◦ mx i
where mx i

: B → B define the
multiplications by x i in B modulo I and are commuting (mx i

◦ mx j
= mx j

◦ mx i
for

1¶ i < j ¶ n).

Proof.

(i) It follows from the fact that N|B is invertible that V = B⊕ ker(N). Let π : V → B be
the projection onto B along ker(N) and define

mx i
: B −→ B,

b −→ π(x i · b).

Then ∀b ∈ B,

mx i
(b) = x i · b mod ker(N) (3.9)

= x i · b mod I (3.10)

where the last equality follows from ker(N) ⊂ I ∩ V .

For α ∈ Nn, we write mα = mα1
x1
◦ · · · ◦mαn

xn
and for f =

∑p
i=1 ci x

αi ∈ R we define

f (m) =
p
∑

i=1

cim
αi : B→ B.

Replacing u by π(u) which is also invertible in R/I , we can assume that u ∈ B. We
will show that the sequence

0 J R B 0

f f (m)(u)

φ
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with J = ker(φ) is exact. From (3.10), we deduce that ∀ f ∈ R,φ( f ) = f u mod I
so that J = kerφ ⊂ I . If πI : R→ R/I is the map that sends f to its residue class
in R/I , we have πI(φ( f )) = πI( f u). Hence πI(φ(R)) = πI(R u) = R/I since u
is invertible in R/I and dimC(φ(R)) ≥ dimC(R/I) = δ. But also φ(R) ⊂ B means
dimC(φ(R)) ≤ dimC(B) = δ. We deduce that φ is surjective and πI : B → R/I
is an isomorphism. It follows that the induced map φ : R/J → B ' R/I is an
isomorphism of C-vector spaces, which implies J = I since J ⊂ I . We conclude that
φ is an isomorphism of R-modules between R/I and B and its inverse is u−1 · πI .
This proves the first point.

(ii) Moreover, B∩ I = {0} since πI : B→ R/I is an isomorphism; As B is supplementary
to ker(N) in V and ker(N) ⊂ I ∩V by hypothesis, we deduce that I ∩V = ker(N). It
follows that V = B⊕ker(N) = B⊕(I∩V ). We have ker(N) ⊂ I and thus 〈ker(N)〉 ⊂ I .
Therefore (〈ker(N) : u) ⊂ (I : u) = I since u is a unit in R/I . To prove the reverse
inclusion, notice that if f ∈ I = J = kerφ then by the relation (3.9), f u ∈ 〈ker(N)〉.
This implies that

I ⊂ (〈ker(N)〉 : u) ⊂ I ,

which proves the second point.

(iii) From Equation (3.10) and the isomorphism φ between R/I and B, we deduce
that the operators mx i

correspond to the multiplications by the variables x i in
the quotient algebra R/I . Thus they are commuting. By construction, we have
Ni(b) = N(x i · b) = N(π(x i · b)) = (N|B ◦mx i

)(b), where the second equality follows
from ker(π) = ker(N). This concludes the proof of the third point.

�

Corollary 3.5.11 A linear map N : V → Cδ covers a TNF N with respect to I if and only
if N , V satisfy the conditions of Theorem 3.5.10.

Proof. For the if direction, take any B ⊂W for which N|B is invertible and (N|B)−1 ◦N is a
TNF by Theorem 3.5.10. For the other implication, if N covers a TNF, then N = P ◦N for
some isomorphism P : B→ Cδ, B ⊂W . Hence N|B = P and N|W is ontoCδ. It is clear from
the properties of TNFs that ker(N) = I ∩ V . For the first condition, if the isomorphism
R/I ' B is given by φ, we can take u= φ(1+ I) ∈ B ⊂ V and we’re done. �
It follows from Theorem 3.5.10 that once we have a matrix representation of N , N|B and
the Ni, i = 1, . . . , n, the matrices mx i

are given by (N|B)−1Ni. The eigenvalues z ji, j =
1, . . . ,δ of the mx i

can be computed as the generalized eigenvalues of Ni v = λN|B v. As
detailed in Section 3.3, computing the eigenvalues and eigenvectors of the operators of
multiplication yields the solution of the polynomial equations.

When u = 1 ∈ V , then ∀b ∈ B,φ(b) = b mod I . Since B ∩ I = {0}, we have ∀b ∈ B,
φ(b) = b and φ is the normal form or ideal projector on B along its kernel I . Moreover,
(iii) implies that 〈ker(N)〉= I .
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By the normal form characterization proved in [Mou99, MT05b], if the set B is con-
nected to 1 (1 ∈ B and there exists vector spaces Bl ⊂ R such that B0 = 〈(〉1) = C ⊂ B1 ⊂
· · · ⊂ Bk = B with Bl+1 ⊂ B+l where B+l = Bl + x1Bl + · · ·+ xnBl), then the commutation
property (point (iv)) implies that B ' R/I (point (ii)).

3.5.5 Constructing truncated normal forms

In some interesting cases, a map N : V → Cδ covering a TNF can be computed as the
cokernel of a resultant map. Such a map is defined as follows.

Definition 3.5.12 (Resultant map) Let f = [ f1, . . . , fs] ∈ Rs. A resultant map w.r.t. f is
a map

M : V1 × · · · × Vs −→ V : (q1, . . . , qs) 7−→ q1 f1 + · · ·+ qs fs.

with Vi, V ⊂ R finite dimensional vector subspaces.

Note that all resultant maps with respect to f share the property that im(M) ⊂ I∩V where
I = ( f1, . . . , fs). Hence, if N = coker(M), we have ker(N) ⊂ I ∩ V . In the following
sections, we show how TNFs are covered by the cokernel of a specific resultant map
in the affine, toric, homogeneous and multihomogenous setting when I is a complete
intersection.

We now show how the cokernel of a particular resultant map gives a map N and a
subspace V satisfying the conditions of Theorem 3.5.10. Consider a zero-dimensional
ideal I = 〈 f1, . . . , fn〉 ⊂ R such that the fi define a system of polynomial equations that
has no solutions at infinity. That is, denoting deg( fi) = di, we assume that the fi are
generic in the sense that there are δ =

∏n
i=1 di solutions, counting multiplicities, in Cn.

We denote these solutions by V (I) = {z1, . . . , zδ0
} ⊂ Cn, where δ0 ≤ δ is the number of

distinct solutions. Next, we consider a generic linear polynomial f0. We use the classical
Macaulay resultant matrix construction defined as follows. Let ρ =

∑n
i=1 di − n+ 1, let

V = R≤ρ be the space of polynomials of degree ≤ ρ and Vi = R≤ρ−di
. The associated

resultant map is

M0 : V0 × V1 × · · · × Vn −→ V
(q0, q1, . . . , qn) 7−→ q0 f0 + q1 f1 + · · ·+ qn fn.

There is a square submatrix M ′ of the matrix of M0 such that det(M ′) is a nontrivial
multiple of the resultant Res( f0, f1, . . . , fn) [CLO97, Mac02]. The monomial multiples
of f0 involved in M ′ have exponents in Σ0 = {α ∈ Nn : αi < di, i = 1, . . . , n}. The set
B0 of monomials with exponents in Σ0 corresponds generically to a basis (the so-called
Macaulay basis) of R/I : B0 = 〈B0〉 ' R/I . The matrix M ′ decomposes as

M ′ =
�

M00 M01

M10 M11

�
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where the rows and columns of the first block M00 are indexed by B0. The matrix M̃ =
�

M01

M11

�

representing monomial multiples of f1, . . . , fn is such that im(M̃) ⊂ I ∩ V . Since

for generic systems f1, . . . , fn, the matrix M11 is invertible (see [Mac02], [CLO97, Chapter
3]), the rank of M̃ is dim V −δ. Let N be the coefficient matrix of a basis of the left null-
space of M̃ so that N M̃ = 0. Then N corresponds to a linear map V → Cδ of rank δ such
that its kernel is im(M̃) ⊂ I . In fact, denoting M = (M0)|V1×···×Vn

(i.e. M(q1, . . . , qn) =
q1 f1 + . . .+ qn fn) it satisfies

ker(N) = im(M̃) = im(M) = I ∩ V = I≤ρ,

since B0 ∩ I = {0} and M11 is invertible, so that any element in im(M) can be projected
in B0 ∩ I along im(M̃) (i.e. im(M) ⊂ im(M̃) ⊂ im(M)).

In order to apply Theorem 3.5.10, we need to restrict N to a subset W ⊂ V , such that
x i ·W ⊂ V and N|W is surjective. Let us take W = R≤ρ−1. Since M11 is invertible, N is
equivalent to the matrix

�

id −M01M−1
11

�

where the columns of the δ× δ identity block
are indexed by the monomials inB0. Since B0 ⊂W , we deduce that N|W is surjective.

This leads to Algorithm 3.5.1 for computing the algebra structure of R/I . Note that
in step 5 of the algorithm we make a choice of monomial basis for R/I . In order to
have accurate multiplication matrices, N|B should be ‘as invertible as possible’. A good
choice here is to use QR with optimal column pivoting on the matrix N|W , such that
B corresponds to a well-conditioned submatrix. We use M instead of M̃ for numerical
reasons. It leads to a more accurate computation of the null space.

Algorithm 3.5.1: Computes the structure of the algebra R/I (affine, dense case)
1: procedure ALGEBRASTRUCTURE( f1, . . . , fn)
2: M ← the resultant map on V1 × · · · × Vn

3: N ← null(M>)>

4: N|W ← columns of N corresponding to monomials of degree < ρ
5: N|B ← columns of N|W corresponding to an invertible submatrix
6: B ←monomials corresponding to the columns of N|B for i = 1, . . . , n do
7:

end
Ni ← columns of N corresponding to x i · B

8: mx i
← (N|B)−1Ni

9:

10: return mx1
, . . . , mxn

11: end procedure

Example 3.5.13 Consider the ideal I = 〈 f1, f2〉 ⊂ C[x1, x2] given by

f1 = 7+ 3x1 − 6x2 − 4x2
1 + 2x1 x2 + 5x2

2 ,

f2 = −1− 3x1 + 14x2 − 2x2
1 + 2x1 x2 − 3x2

2 .
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As illustrated in Figure 3.1, the solutions are z1 = (−2,3), z2 = (3,2), z3 = (2,1), z4 =
(−1, 0). The dense Macaulay matrix M of degree ρ = d1 + d2 − n+ 1= 3 is

M> =















1 x1 x2 x2
1 x1 x2 x2

2 x3
1 x2

1 x2 x1 x2
2 x3

2

f1 7 3 −6 −4 2 5
x1 f1 7 3 −6 −4 2 5
x2 f1 7 3 −6 −4 2 5

f2 −1 −3 14 −2 2 −3
x1 f2 −1 −3 14 −2 2 −3
x2 f2 −1 −3 14 −2 2 −3















.

Since all solutions are simple, a basis for the left null space of M is given by v(3)(zi), i =
1, . . . , 4, where

v(3)(x1, x2) =
�

1 x1 x2 x2
1 x1 x2 x2

2 x3
1 x2

1 x2 x1 x2
2 x3

2

�

.

These are the linear functionals ηi, i = 1, . . . , 4 in V ∗∩ I⊥ representing ‘evaluation in zi ’. We
find

N =







1 x1 x2 x2
1 x1 x2 x2

2 x3
1 x2

1 x2 x1 x2
2 x3

2

v(3)(−2,3) 1 −2 3 4 −6 9 −8 12 −18 27
v(3)(3,2) 1 3 2 9 6 4 27 18 12 8
v(3)(2,1) 1 2 1 4 2 1 8 4 2 1

v(3)(−1,0) 1 −1 0 1 0 0 −1 0 0 0






.

ForB = {x1, x2, x2
1 , x1 x2}, the submatrices we need are

N|B =







−2 3 4 −6
3 2 9 6
2 1 4 2
−1 0 1 0






, N1 =







4 −6 −8 12
9 6 27 18
4 2 8 4
1 0 −1 0






, N2 =







−6 9 12 −18
6 4 18 12
2 1 4 2
0 0 0 0






,

corresponding toB , x1 ·B and x2 ·B respectively. The vector space B in this example is the
space of polynomials supported in B . One can check that N|B is invertible. Using Matlab,
we find the eigenvalues of N2v = λN|B v via the command eig. The eigenvalues are 0, 1,2, 3
as expected. Of course, in practice we do not know the solutions and we cannot construct
the nullspace in this way. Any basis will do, since using another basis comes down to left
multiplying N and the Ni by an invertible matrix. Note that B does not correspond to any
monomial order and it is not connected to one, so it does not correspond to a Groebner or a
border basis.
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−4 −2 0 2 4

0

2
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6

x1

x 2

Figure 3.1: Picture in R2 of the algebraic curves V ( f1) ( ) and V ( f2) ( ) from Ex-
ample 3.5.13.
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In this chapter, we use the algebraic tools and the properties of Artinian algebras to
recover the decomposition of moment series as polynomial-exponential series.

4.1 Hankel operators

The external product ? allows us to define a Hankel operator as a multiplication operator
by dual elements ∈ R? where R=K[x ]:

Definition 4.1.1 The Hankel operator associated to σ = (σ1, . . . ,σm) ∈ (R?)m is

Hσ : R → (R?)m

p 7→ (p ?σ1, . . . , p ?σm)

Its kernel is denoted Iσ = ker Hσ. The element σ ∈ (R?)m is called the symbol of Hσ.

Hereafter, we will also denote p ? σ = (p ? σ1, . . . , p ? σm) ∈ (R?)m and 〈σ | p〉 = (〈σ1 |
p〉, . . . , 〈σm | p〉) ∈Km.

As ∀p, q ∈ R, pq ? σ = p ? (q ? σ), we easily check that Iσ = ker Hσ is an ideal of R
and thatAσ = R/Iσ is an algebra.

43
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Definition 4.1.2 The rank of an element σ ∈ (R?)m is the rank r of the Hankel operator
Hσ.

If the rank r of σ is finite, then the quotient Aσ of R by the kernel Iσ is of dimension
r <∞, i.e. dimAσ = rank Hσ = rankσ andAσ is Artinian.

Since ∀p(x ), q(x ) ∈K[x ], 〈p(x )+ Iσ, q(x )+ Iσ〉σ = 〈p(x ), q(x )〉σ, we see that 〈·, ·〉σ
induces an inner product onAσ.

Definition 4.1.3 The variety VK(Iσ) is called the characteristic variety of σ.

The Hankel operator can be interpreted as an operator on sequences:

Hσ : `0(KN
n
) → (KN

n
)m

p = (pβ)β∈B⊂Nn 7→

  

∑

β∈B

pβσ
1
α+β

!

α∈Nn

, . . . ,

 

∑

β∈B

pβσ
m
α+β

!

α∈Nn

!

where `0(KN
n
) is the set of sequences ∈ KNn

with a finite support and (σi
α
)α∈Nn is the

sequence in KN
n

associated to the element σ ∈ R? (see chap. 2). This definition applies
for a field K of any characteristic.

Given sequences σ = (σ1, . . . ,σm) with σi = (σi
α
)α∈Nn ∈ KN

n
for i = 1, . . . , m, the

kernel of Hσ is the set of polynomials p =
∑

β∈B pβ x β such that p =
∑

β∈B pβσ
i
α+β for

all α ∈ Nn and i = 1, . . . , m. This kernel is also called the set of (simultaneous) linear
recurrence relations of the sequences (σi

α
)α∈Nn , i = 1, . . . , m.

The operator Hσ can also be interpreted, via the Z-transform of the sequence p ? σ
(see Section 2.3), as the following operators on series:

Hσ :K[x ] → K[[z]]m

p =
∑

β∈B

pβ x β 7→

 

∑

α∈Nn

 

∑

β∈B

pβσ
i
α+β

!

zα, . . . ,
∑

α∈Nn

 

∑

β∈B

pβσ
m
α+β

!

zα
!

.

In the terms of series in y , the operator Hσ is operating as follows:

Hσ :K[x ] → K[[y]]m

p 7→
�

p(∂y)(σ1), . . . , p(∂y)(σm)
�

.

Its kernel is spanned by the differential polynomials p(∂y), which cancel simultaneously
σ1, . . . ,σm.

Example 4.1.4 If σ = eξ ∈ R? is the evaluation at a point ξ ∈ Kn, then Heξ
: p ∈ R 7→

p(ξ)eξ(y) ∈ R?. We easily check that rank Heξ
= 1 since the image of Heξ

is spanned by
eξ(y) and that Ieξ = (x1 − ξ1, . . . , xn − ξn).
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Example 4.1.5 If σ = (σ1, . . . ,σm) with σi =
∑ri

i=1 ωi(y)eξi
(y) then, by Lemma 2.2.1,

the kernel Iσ is the set of polynomials p ∈K[x ] such that ∀q ∈K[x ], p is a solution of the
following system of partial differential equations:

ri
∑

i=1

ωk,i(∂ )(pq)(ξi) = 0, k = 1, . . . , m.

4.1.1 Truncated Hankel operators

In the sparse reconstruction problem, we are dealing with truncated series with known
coefficients σα for α in a subset a of Nn. This leads to the definition of truncated Hankel
operators.

Definition 4.1.6 For vector spaces V ⊂ R, W = (W1, . . . , Wm) ⊂ Rm and σ = (σ1, . . . ,σm)
with σi ∈ 〈V ·Wi〉

? where V ·Wi = 〈v ·w | v ∈ V, w ∈Wi〉 ⊂ R we denote by HV,W
σ

the follow-
ing map:

HV,W
σ

: V → W ∗ =
m
∏

i=1

Wi
?

p 7→
�

(p ?σ1)|W1
, . . . , (p ?σm)|Wm

�

It is called the truncated Hankel operator on (V, W ).

When m = 1, σ ∈ R? and W = V , the truncated Hankel operator is also denoted HV
σ

.
When V (resp. Wi) is the vector space of polynomials of degree¶ d ∈ N (resp. ¶ d ′i ∈ N),
the truncated operator is denoted Hd,d ′

σ
where d ′ = (d ′1, . . . , d ′m).

If B = {b1, . . . , br} (resp. C i = {c i
1, . . . , c i

r}) is a basis of V (resp. Wi), then the matrix
of the operator HV,W

σ
in B and the dual basis of C = (C1, . . . , Cm) has a block structure of

the form

[HB,C
σ
] =

























〈σ1|b1c1
1〉 · · · 〈σ1|br c

1
1〉

...
...

〈σ1|b1c1
r1
〉 · · · 〈σ1|br c

1
r1
〉

...
〈σ1|b1cm

i 〉 · · · 〈σ1|br c
m
1 〉

...
...

〈σ1|b1cm
rm
〉 · · · 〈σ1|br c

m
rm
〉

























.

Hereafter, we will use the notation [HB,C
σ
] = [〈σk | b jc

k
i 〉]ck

i ∈C ,b j∈B.

Example 4.1.7 Let σ = (e(1,0), e(1,2)) ∈ (K[x1, x2]
?)∗, B = [1, x1, x2, x2

1 , x1 x2, x2
2], C =

(C1, C2) = ([1, x1, x2], [1, x1, x2]). Then HB,C
σ

is composed of two blocks, which (i, j) entry
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is obtained by evaluating σk on the product of the ith monomial of Ck and the jth monomials
in B for k = 1,2:

HB,C
σ
=















1 1 0 1 0 0
1 1 0 1 0 0
0 0 0 0 0 0
1 1 2 1 2 4
2 2 4 2 4 8
4 4 8 4 8 16















.

It is a matrix of rank 2 composed of two blocks of rank 1 (which rows are multiples of the
first row of the block).

If m= 1, σ ∈K[x ]?, B = {x β}β∈b and C = {x γ}γ∈c are monomial sets, we obtain the
following truncated moment matrix of σ:

[HB,C
σ
] = (〈σ | x β+γ〉)γ∈c,β∈b.

Its coefficients depend only on the sum of the indices indexing the rows and columns.
This is a characterization of the classical structure of Hankel matrices when n = 1

and B = {1, x , x2, . . . , x d}, C = {1, x , . . . , x d ′} (see e.g. [BP94]). When n ¾ 2, we have a
similar family of structured matrices, which rows and columns are indexed by exponents
inNn (or monolials) and which entries depends on the sum of the row and column indices.
These structured matrices called quasi-Hankel matrices have been studied for instance
in [MP00].

4.2 Artinian Gorenstein Algebra

In this section, we analyse the properties of Artinian algebras associated to Hankel oper-
ators, in the case m= 1.

Given σ ∈K[[y]], we consider its Hankel operator Hσ : p ∈K[x ] 7→ p ?σ ∈K[[y]].
The kernel Iσ of Hσ is an ideal and the elements p ? σ of im Hσ for p ∈ K[x ] are in
I⊥
σ
=A ∗

σ
where Aσ = K[x ]/Iσ: ∀q ∈ Iσ, 〈p ? σ | q〉 = 〈q ? σ | p〉 = 0. If Aσ is artinian

of dimension r, then
im Hσ = {p ?σ | p ∈ R} ⊂ I⊥

σ
=A ∗

σ

is of dimension ¶ r. Therefore, the injective map

Hσ :Aσ → A ∗
σ

p(x ) 7→ p(x ) ?σ(y)

induced by Hσ is an isomorphism, and we have the exact sequence:

0→ Iσ→K[x ]
Hσ−→A ∗

σ
→ 0. (4.1)
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Proposition 4.2.1 The inner product 〈., .〉σ is non-degenerate onAσ =K[x ]/Iσ.

Proof. By definition of Iσ, if p ∈K[x ] is such that ∀q ∈K[x ],

〈p(x ), q(x )〉σ = 〈p ?σ(y) | q(x )〉= 0,

then p ? σ(y) = 0 and p ∈ Iσ. We deduce that the inner product 〈·, ·〉σ is non-generate
onAσ =K[x ]/Iσ. �
This is in fact a characterization of Gorenstein Artinian algebra, as shown in the following
theorem:

Theorem 4.2.2 Let I ⊂K[x ] be an ideal such thatA =K[x ]/I is Artinian. The following
properties are equivalent:

1. A ? is a freeA -module of rank 1 (spanned by σ ∈A ?).

2. There exists σ ∈A ? such that the inner product 〈., .〉σ is non-degenerate onA .

3. There exists anA -isomorphism ∆ betweenA ? andA .

4. HomA (A ?,A ) is a freeA -module of basis ∆.

If these properties are satisfied,A is called a Gorenstein Artinian algebra.

(see e.g. [EM07a][chap. 8]).

Example 4.2.3 Let I = (x2
1 , x2

2) ⊂ K[x1, x2]. Then A = K[x1, x2]/I is an Artinian alge-
bra of dimension 4. Its dual is

A ? = I⊥ = 〈1, y1, y2, y1 y2〉= D(y1 y2).

The inverse system I⊥ =A ? is generated by the element y1 y2. It is a freeA -module of rank
1, since p ? y1 y2 = 0 with p ∈K[x1, x2] implies that

p(0, 0) = 0,∂1(p)(0, 0) = 0,∂2(p)(0, 0) = 0,∂1∂2(p)(0, 0) = 0.

and that p ∈ (x2
1 , x2

2) or p ≡ 0 inA .
A basis ofA is B = {1, x1, x2, x1 x2}. The matrix of 〈., .〉y1 y2

in this basis is







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






.

It is invertible and 〈., .〉y1 y2
is non-degenerate.

These two equivalent properties mean thatA is a Gorenstein Artinian algebra.
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Example 4.2.4 Here is an example of a non-Gorenstein Artinian algebra. Let I = (x1, x2)2 ⊂
K[x1, x2]. Then A = K[x1, x2]/I is an Artinian algebra of dimension 3. A basis of A is
B = {1, x1, x2}. Its dual is

A ? = I⊥ = 〈1, y1, y2〉= D(y1, y2).

The inverse system I⊥ = A ? is generated by the two elements y1, y2. For any element
σ ∈A ? of the form σ = σ0 +σ1 y1 +σ2 y2 ∈A ?, with σi ∈K, the matrix of 〈., .〉σ in the
basis B = {1, x1, x2} ofA is





σ0 σ1 σ2

σ1 0 0
σ2 0 0



 .

It is of rank ¶ 2. Thus 〈., .〉σ is degenerate andA is not a Gorenstein Artinian algebra.

Proposition 4.2.1 and Theorem 4.2.2 implies that for σ =K[x ]? σ 6= 0, σ 6= 0, Hσ of
finite rank, Iσ = ker Hσ, the Artinian algebra Aσ = K[x ]/Iσ is Gorenstein. Conversely,
any Artinian Gorenstein algebra is of this type.

Proposition 4.2.5 For any Artinian Gorenstein algebra A = K[x ]/I with I an ideal of
K[x ], there exists σ ∈K[x ]?, such that I = ker Hσ.

Proof. As A = K[x ]/I is Artinian Gorenstein, by Theorem 4.2.2 there exists σ ∈ A ?

such that σ is a basis of the freeA -moduleA ?:

A ? = I⊥ = σ ?A

This implies that the map

Hσ :K[x ] → A ?

p 7→ p ?σ

is surjective and that it induces an isomorphism between K[x ]/Iσ and A ? where Iσ =
ker Hσ. As I ⊂ Iσ and dimA = dimA ? <∞, we deduce that I = Iσ. �
This construction defines a correspondence between series σ ∈K[[y]] of finite rank 6= 0
or Hankel operators Hσ of finite rank 6= 0 and Artinian Gorenstein Algebras.

4.3 Hankel operators of finite rank

Hankel operators of finite rank play an important role in functional analysis. In one
variable and m = 1, they are characterized by Kronecker’s theorem [Kro80] as follows
(see e.g. [Pel98] for more details). Let `0(KN) be the vector space of sequences ∈ KN of
finite support and let σ = (σk)k∈N ∈ KN. The Hankel operator Hσ : (pl)l∈N ∈ `0(KN) 7→
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�∑

l σk+l pl

�

k∈N ∈ K
N is of finite rank r, if and only if, there exist polynomials ω1(u), . . .,

ωr(u) ∈K[u] and ξ1, . . . ,ξr ∈K distinct such that

σk =
r
∑

i=1

ωi(k)ξ
k
i ,

with
∑r

i=1 deg(ωi) + 1 = rank Hσ. Rewriting it in terms of generating series, we have

Hσ : p =
∑

l pl x
l ∈K[x] 7→

∑

k∈N

�∑

l σk+l pl

� yk

k! = p ?σ is of finite rank, if and only if,

σ(y) =
∑

k∈N

σk
yk

k!
=

r
∑

i=1

ωi(y)e
ξi y

withω1, . . . ,ωr ∈K[y] and ξ1, . . . ,ξr ∈K distinct such that
∑r

i=1 deg(ωi)+1= rank Hσ.
Notice that deg(ωi)+1 is the dimension of the vector space spanned by ωi(y) and all its
derivatives.

In the case of several variables, extensions of Kronecker’s theorem have been devel-
oped [Fli70], [Pow82], [AC16], [AC15], but without connecting the rank of the Hankel
operator with the decomposition of the associated symbol. The following result general-
izes Kronecker’s theorem, by establishing a correspondence between Hankel operators of
finite rank and polynomial-exponential series and by connecting the rank of the Hankel
operator with the decomposition of the associated series.

Theorem 4.3.1 Letσ = (σ1, . . . ,σm) ∈ (R?)m. Then rank Hσ <∞, if and only if, σk(y) ∈
P olE x p(y) for k = 1, . . . , m.

If σk(y) =
∑r

i=1 ωk,i(y)eξi
(y) with ωk,i(y) ∈ K[y]andξi ∈ Kn pairwise distinct, then

rank Hσ =
∑r

i=1µ(ω1,i, . . . ,ωm,i) where µ(ω1,i, . . . ,ωm,i) is the dimension of the inverse
system D(ω1,i, . . . ,ωm,i) spanned by ωk,i(y) and all their derivatives ∂ α1

y1
· · ·∂ αn

yn
ωk,i(y) for

α= (α1, . . . ,αn) ∈ Nn, k = 1, . . . , m.

Proof. If Hσ is of finite rank ρ, then Aσ = K[x ]/Iσ = K[x ]/ker Hσ ∼ Im(Hσ) is of
dimension ρ andAσ is an artinian algebra. By Theorem 3.2.1, it can be decomposed as
a direct sum of sub-algebras

Aσ =Aξ1
⊕ · · · ⊕Aξr

where Iσ = Q1 ∩ · · · ∩Q r is a minimal primary decomposition, V (Iσ) = {ξ1, . . . ,ξr} and
Aξi

is the local algebra for the maximal ideal mζi defining the root ξi ∈ Kn, such that
Aξi
≡K[x ]/Q i where Q i is a mξi

-primary component of Iσ.
By Theorem 3.4.3, for k = 1, . . . , m, the series σk ∈A ∗

σ
= I⊥

σ
can be decomposed as

σk =
r
∑

i=1

ωk,i(y) eξi
(y) (4.2)

with ωk,i(y) ∈K[y] and ωk,i(y) eξi
(y) ∈A ∗

ξi
=Q⊥i , i.e. σk ∈ P olE x p(y).
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Conversely, let us show that if, for k = 1, . . . , m, σk(y) =
∑r

i=1 ωk,i(y) eξi
(y) with

ωi(y) ∈ K[y] \ {0} and ξi ∈ Kn pairwise distinct, the rank of Hσ is finite. Using
Lemma 2.2.5, we check that Iσ = ker Hσ contains ∩r

i=1mdi+1
ξi

where di =maxk{deg(ωk,i)}.
Thus V (Iσ) ⊂ {ξ1, . . . ,ξr}, Aσ is an artinian algebra and rank Hσ = dim(Im(Hσ)) =
dim(K[x ]/Iσ) = dim(Aσ)<∞.

Let us show now that rank Hσ =
∑r

i=1µ(ω1,i, . . . ,ωm,i). By construction,

rank Hσ = dim(R/ker Hσ) = dim((ker Hσ)
⊥) = dim((∩m

k=1 ker Hσk
)⊥) = dim(

m
∑

k=1

I⊥
σk
)

where Hσk
: p ∈ R 7→ p?σk ∈ R? and Iσk

= ker Hσk
for k = 1, . . . , m. Consider the Artinian

algebraAσk
= R/Iσk

and its decomposition (3.3) as a direct sum of local algebras: Aσk
=

⊕r
i=1Ak,ξi

. Thus, we have the dual decomposition:

I⊥
σk
=A ?

σk
= ⊕r

i=1A
?
k,ξi

.

By the exact sequence (4.1), A ∗
σk
= Im(Hσk

) = {p ? σk | p ∈ K[x ]}. From Lemma
3.4.2, we deduce thatA ∗

k,ξi
is spanned by the elements uk,ξi

? (p ?σk) = p ? (uk,ξi
?σk) =

p?
�

ωk,i(y) eξi
(y)
�

for p ∈K[x ], that is, byωi(y) eξi
(y) and all its derivatives with respect

to d
d yi

. This shows thatA ∗
ξi
= D(ωk,i) eξi

(y) where D(ωk,i) ⊂ K[y] is the inverse system
spanned by ωk,i(y). It implies that

I⊥
σ
=

k
∑

k=1

I⊥
σk
=

r
⊕

i=1

�

m
∑

k=1

D(ωk,i) eξi

�

=
r
⊕

i=1

D(ω1,i, . . . ,ωm,i) eξi

We deduce that rank Hσ =
∑r

i=1 dim
�

D(ω1,i, . . . ,ωm,i)
�

=
∑r

i=1µ(ω1,i, . . . ,ωm,i). This
concludes the proof of the theorem. �
Here are some direct consequences of this result.

Proposition 4.3.2 If σ = (σ1, . . . ,σm) with σk(y) =
∑r

i=1 ωk,i(y)eξi
(y) and ωk,i(y) ∈

K[y] not all zero for k = 1, . . . , m and ξi ∈Kn pairwise distinct, then we have the following
properties:

• The points ξ1,ξ2, . . . ,ξr ∈ Kn are the common roots of the polynomials in Iσ =
ker Hσ = {p ∈K[x ] | ∀q ∈K[x ], 〈σ|pq〉= 0}.

• The inverse system of Q i is D(ω1,i, . . . ,ωm,i), where Q i is the primary component of
Iσ associated to ξi.

Proof. From the previous proof of Theorem 4.3.1, we have

I⊥
σ
=

r
⊕

i=1

Q⊥i =
r
⊕

i=1

D(ω1,i, . . . ,ωm,i) eξi

with Q⊥i = D(ω1,i, . . . ,ωm,i) eξi
. This shows that
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• Q i is mξi
-primary and V (Iσ) = {ξ1, . . . ,ξr},

• the inverse system of Q i is D(ω1,i, . . . ,ωm,i) eξi
.

�
A special case of interest is when the roots are simple. We characterize it as follows:

Proposition 4.3.3 Let σ(y) ∈ (K[[y]])m. The following conditions are equivalent:

1. σk(y) =
∑r

i=1ωk,i eξi
(y), with {ω1,i, . . . ,ωm,i} ⊂ K not all zero and ξi ∈ Kn pairwise

distinct.

2. The rank of Hσ is r = #V (Iσ) and the multiplicity of the roots ξ1, . . . ,ξr ∈ V (Iσ) is 1.

3. A basis ofA ∗
σ

is eξ1
, . . . , eξr

.

Proof. 1⇒ 2. By theorem 4.3.1, the rank of Hσ is
∑r

i=1µ(ω1,i, . . . ,ωm,i) the dimension
of the space spanned by ωk,i and their derivatives. As {ω1,i, . . . ,ωm,i} ⊂ K are not all
zero, rank Hσ = r and the multiplicity of the root ξi is µ(ω1,i, . . . ,ωm,i) = 1.

2 ⇒ 3. As the multiplicity of the roots ξi is 1 and σk ∈ I⊥
σ

, by Theorem 3.4.3 σk =
∑r

i=1ωk,i eξi
with ωk,i = 0 or deg(ωk,i) = 0. By Theorem 4.3.1, we have

A ∗
σ
= I⊥

σ
=

r
⊕

i=1

D(ω1,i, . . . ,ωm,i)eξi
=

r
⊕

i=1

Keξi
.

This shows that eξ1
, . . . , eξr

is a basis ofA ∗
σ

.
3⇒ 1. As eξ1

, . . . , eξr
is a basis A ?

σ
, the points ξi ∈ Kn are pairwise distinct. As σk ∈

A ?
σ

, there exists ωk,i ∈K such that σk =
∑r

i=1ωk,ieξi
. If all the coefficients ω1,i, . . . ,ωm,i

vanish then dim(A ?
σ
) < r, which is contradicting point 3. Thus ω1,i, . . . ,ωm,i are not all

zero. �

Given a Hankel operator Hσ of finite rank r, it is clear that the truncated operators will
have at most rank r. We have a converse property, so-called flat extension property, which
gives conditions under which a truncated Hankel operator of rank r can be extended to
a Hankel operator of the same rank (see [LM09] and extensions [BCMT10], [BBCM13],
[Mou16]).

Theorem 4.3.4 Let V, V ′ ⊂K[x ] be vector spaces connected to 1, such that x1, . . . , xn ∈ V
and let σ ∈ 〈V · V ′〉∗. Let B ⊂ V , B′ ⊂ V ′ such that B+ ⊂ V, B′+ ⊂ V ′. If rank HV,V ′

σ
=

rank HB,B′
σ
= r, then there is a unique extension σ̃ ∈ K[[y]] such that σ̃ coincides with

σ on 〈V · V ′〉 and rank Hσ̃ = r. In this case, σ̃ ∈ P OLY EXP with r = µ(σ̃) and
Iσ̃ = (ker HB+,B′

σ
).

We will use this property in a decomposition method to test when to stop (see section
4.6).
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4.4 Decomposition of series

The sparse decomposition problem of series σ ∈ K[[y]] consists in computing points
{ξ1, . . . ,ξr} ⊂ Kn and weights ωi(y) ∈ K[y] such that σ =

∑r
i=1ωi(y) eξi

(y). In this
section, we describe how to compute this decomposition from the Hankel operator Hσ.

We recall classical results on the resolution of polynomial equations by eigenvalue
and eigenvector computation, that we will use to compute the decomposition. Hereafter,
A = K[x ]/I is the quotient algebra of K[x ] by any ideal I and A ∗ = HomK (A ,K) is
the dual of A . It is naturally identified with the orthogonal I⊥ = {Λ ∈ K[[y]] | ∀p ∈
I , 〈Λ, p〉= 0}. In the reconstruction problem, we will take I = Iσ.

In the first step of method, we will determine a basis of Aσ = K[x ]/Iσ. We will use
the following result:

Lemma 4.4.1 Let B = {b1, . . . , br} ⊂ K[x ], C = {C1, . . . , Cm} ⊂ (K[x ])m. If the matrix
HB,C
σ
= (〈σk|b jci,k〉)ci,k∈C ,b j∈B is invertible, then B is linearly independent inAσ.

Proof. Suppose that HB,C
σ

is invertible. If there exist p =
∑

j p j b j (p j ∈ K) such that
p ≡ 0 in Aσ. Then p ? σ = 0 and ∀q ∈ R, k = 1, . . . , m 〈σk|pq〉 = 0. In particular, we
have

r
∑

j=1

〈σ|b jck, j〉p j = 0.

As HB,C
σ

is invertible, p j = 0 for j = 1, . . . , r and B is a family of linearly independent
elements inAσ. �

Notice that this result depend only on the classes of b j, ck, j modulo Iσ (i.e. in Aσ)
since

〈σk|(bi + p)(ck, j + p′)〉= 〈σk|bick, j〉
for any p, p′ ∈ Iσ.

The converse of Lemma 4.4.1 is not necessarily true, as shown by the following exam-
ple in one variable: if m = 1, σ = y , then Iσ = (x2), Aσ = K[x]/(x2) and B = C = {1}
are linearly independent inAσ, but HB,C

σ
= (〈σ|1〉) = (0) is not invertible.

This lemma implies that if dimAσ < +∞, |B|= |C |= dimAσ and HB,C
σ

is invertible,
then B is a basis ofAσ.

If m= 1 and B, C ⊂K[x ] such that |B|= |C | and HB,C
σ

invertible, we can also deduce
from Lemma 4.4.1 that C is linearly independent inAσ since HC ,B

σ
= (HB,C

σ
)t is invertible.

By quotient by Iσ = ker Hσ, the Hankel operator Hσ induces the map

Hσ :Aσ → (A ?
σ
)m

p 7→ p ?σ.

For g ∈K[x ], the operator of multiplication by g inAσ is

Mg :Aσ → Aσ

p 7→ g p.
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Lemma 4.4.2 For any g ∈K[x ], we have

Hg?σ =Hσ ◦Mg . (4.3)

Proof. This is a direct consequence of the definitions ofHg?σ,Hσ andMg . �
The transpose operator of multiplication by g is (by definition of the tranposition)

M t
g :A ?

σ
→ A ?

σ

σ 7→ g ?σ.

When m= 1, we have an additional relation:

Lemma 4.4.3 For any g ∈K[x ] and σ ∈K[x ]?, we have

Hg?σ =M t
g ◦Hσ. (4.4)

Proof. This is also a direct consequence of the commutativity of the product inAσ and
the definitions ofHg?σ,Hσ andM t

g . �
From Relation (4.3) and Proposition 3.3.2, we have the following property.

Proposition 4.4.4 Ifσ(y) =
∑r

i=1 ωi(y)eξi
(y)withωi ∈K[y]\{0} and ξi ∈Kn distinct,

then

• for all g ∈ A , the generalized eigenvalues of (Hg?σ,Hσ) are g(ξi) with multiplicity
µi = µ(ωi), i = 1 . . . r,

• the generalized eigenvectors common to all (Hg?σ,Hσ) with g ∈ A are - up to a
scalar - H −1

σ
(eξ1
), . . . ,H −1

σ
(eξr
).

Remark 4.4.5 If we take g = x i, then the eigenvalues are the i-th coordinates of the points
ξ j.

4.4.1 The case of simple roots

We consider the case where m = 1 and Iσ defines simple roots, that is σ is of the form
σ(y) =

∑r
i=1 ωieξi

(y) with ωi ∈ K \ {0} and ξi ∈ Kn distinct, computing the decompo-
sition reduces to a simple eigenvector computation, as we will see.

By Proposition 4.3.3, {eξ1
, . . . , eξr

} is a basis of A ∗
σ

. We denote by {uξ1
, . . . , uξr

} the
basis ofAσ, which is dual to {eξ1

, . . . , eξr
}, so that ∀a ∈Aσ,

a(x )≡
r
∑

i=1

〈eξi
| a〉uξi

(x )≡
r
∑

i=1

a(ξi)uξi
(x ). (4.5)

From this formula, we easily verify that the polynomials uξ1
, uξ2

, . . . , uξr
are the interpo-

lation polynomials at the points ξ1,ξ2, . . . ,ξr , and satisfy the following relations inAσ:
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• uξi
(ξ j)=

§

1 if i = j,
0 otherwise .

• uξi
(x )2 ≡ uξi

(x ).

•
∑r

i=1 uξi
(x )≡ 1.

Proposition 4.4.6 Let σ =
∑r

i=1 ωieξi
(y) with ξi pairwise distinct and ωi ∈K \ {0}.

The basis {uξ1
, . . . , uξr

} is an orthogonal basis ofAσ for the inner product 〈., .〉σ and satisfies
〈uξi

, 1〉σ = 〈σ | uξi
〉=ωi for i = 1 . . . , r.

Proof. For i, j = 1 . . . r, we have 〈uξi
, uξ j
〉σ = 〈σ | uξi

uξ j
〉 =

∑r
k=1 ωkuξi

(ξk)uξ j
(ξk).

Thus

〈uξi
, uξ j
〉σ =

§

ωi if i = j
0 otherwise

and {uξ1
, . . . , uξr

} is an orthogonal basis ofAσ. Moreover,

〈uξi
, 1〉σ = 〈σ | uξi

〉=
r
∑

k=1

ωkuξi
(ξk) =ωi.

�
Proposition 3.3.2 implies the following result:

Corollary 4.4.7 If g ∈ K[x ] is separating the roots ξ1, . . . ,ξr (i.e. g(ξi) 6= g(ξ j) when
i 6= j), then

• the operatorMg is diagonalizable and its eigenvalues are g(ξ1), . . . , g(ξr),

• the corresponding eigenvectors ofMg are, up to a non-zero scalar, the interpolation
polynomials uξ1

, . . . , uξr
.

• the corresponding eigenvectors of M t
g are, up to a non-zero scalar, the evaluations

eξ1
, . . . , eξr

.

A simple computation shows that Hσ(uξi
) = ωieξi

(y) for i = 1, . . . , r. This leads to the
following formula for the weights of the decomposition of σ:

Proposition 4.4.8 If σ =
∑r

i=1 ωieξi
(y) with ξi pairwise distinct and ωi ∈ K \ {0} and

g ∈K[x ] is separating the roots ξ1, . . . ,ξr , then there are r linearly independent generalized
eigenvectors v1, . . . , v r of (Hg?σ,Hσ), which satisfy the relations:

〈σ | x j v i〉 = ξi, j〈σ | v i〉 for j = 1, . . . , n, i = 1, . . . , r

σ(y) =
r
∑

i=1

1
v i(ξi)

〈σ | v i〉 eξi
(y)
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Proof. By Lemma 4.4.2 and Corollary 4.4.7, the eigenvectors uξ1
, . . . , uξr

of Mg are
the generalized eigenvectors of (Hg?σ,Hσ). By Corollary 4.4.7, v i is a multiple of the
interpolation polynomial uξi

, and thus of the form v i(x ) = v i(ξi)uξi
(x ) since uξi

(ξi)=1.
We deduce that uξi

(x ) = 1
v i(ξi)

v i(x ). By Proposition 4.4.6, we have

ωi = 〈σ | uξi
〉=

1
v i(ξi)

〈σ | v i〉,

from which, we deduce the decomposition of σ =
∑r

i=1
1

v i(ξi)
〈σ | v i〉 eξi

(y). It implies
that

〈σ | x juξi
〉=

r
∑

k=1

ωkξk, juξi
(ξk) = ξi, jωi = ξi, j〈σ | uξi

〉.

Multiplying by v i(ξi), we obtain the first relations. �

4.4.2 The case of multiple roots

We consider now the more general case where m= 1 and σ is of the form

σ =
r
∑

i=1

ωi(y)eξi
(y)

with ωi(y) ∈K[y] and ξi ∈Kn pairwise distinct. By Theorem 3.2.1, we have

Aσ =Aσ,ξ1
⊕ · · · ⊕Aσ,ξr

whereAσ,ξi
'K[x ]/Q i is the local algebra associated to the mξi

-primary component Q i

of Iσ. The decomposition (3.3) and Proposition 3.4.1 imply thatAσ,ξi
is a local Artinian

Gorenstein Algebra such that uξi
?σ is a basis ofA ∗

σ,ξi
. The operatorsMx j

of multiplica-
tion by the variables x j inAσ for j = 1, . . . , n are commuting and have a block diagonal
decomposition, corresponding to the decomposition ofAσ.

It turns out that the operatorsMx j
have common eigenvectors v i(x ) ∈ Aσ,ξi

. Such
an eigenvector is an element of the socle (0 : mξi

) = {v ∈ Aσ,ξi
| (x j − ξi, j)v ≡ 0, j =

1, . . . , n}= (Q i : mξi
)/Q i.

In the case of an Artinian Gorenstein algebra Aσ,ξi
, the socle (0 : mξi

) is a vector
space of dimension 1 (see e.g. [EM07b] [Sec. 7.1.5 and Sec. 9.5] for a simple proof).
A basis element can be computed as a common eigenvector of the commuting operators
Mx j

. The corresponding eigenvalues are the coordinates ξi,1, . . . ,ξi,n of the roots ξi,
i = 1, . . . , r.

For a separating linear form l(x ) = l1 x1 + · · ·+ ln xn (such that l(ξi) 6= l(ξ j) if i 6= j),
the eigenspace ofMl for the eigenvalue l(ξi) is the local algebra Aξi

associated to the
root ξi. Let Bi = {bi,1, . . . , bi,µi

} be a basis of this eigenspace. It spans the elements of
Aξi

, which are of the form uξi
a for a ∈Aσ where uξi

is the idempotent associated to ξi
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(see Theorem 3.2.1). In particular, the eigenspace ofMl(x ) associated to the eigenvalue
l(ξi) contains the idempotent uξi

, which can be recovered as follows:

Lemma 4.4.9 Let Bi = {bi,1, . . . , bi,µi
} be a basis ofAξi

and Ui = (〈σ | bi,k〉)k=1,...,µi
. Then

(HBi ,Bi
σ
)−1Ui is the coefficient vector of the idempotent uξi

in the basis Bi ofAξi
.

Proof. As the idempotent uξi
satisfies the relation u2

ξi
≡ uξi

in Aσ and Aξi
= uξi

Aσ,
we have

〈uξi
?σ | bi,k〉= 〈σ | uξi

bi,k〉= 〈σ | bi,k〉,

and Ui = (〈σ | 〉bi,k)k=1,...,µi
is the coefficient vector of uξi

?σ in the dual basis of Bi in
A ∗
ξi

. By Lemma 4.4.1, as Bi is a basis of Aξi
, HBi ,Bi

σ
is invertible and (HBi ,Bi

σ
)−1Ui is the

coefficient vector of uξi
in the basis Bi ofAξi

. �

Using the idempotent uξi
, we have the following formula for the weights ωi(y) in

the decomposition of σ:

Proposition 4.4.10 The polynomial coefficient of eξi
(y) in the decomposition of σ is

ωi(y) =
∑

α∈Nn

〈uξi
?σ | (x − ξi)

α〉
yα

α!
. (4.6)

Proof. By Theorem 4.2.2 and relation (3.3), we have

uξi
?σ =ωi(y)eξi

(y).

As 〈yβeξi
(y) | (x − ξi)α〉=

§

α! ifα= β
0 otherwise , we deduce the decomposition (4.6), which

is a finite sum since ωi(y) ∈K[y]. �

4.5 Decomposition algorithm

The results of the previous section show that the decomposition of σ can be deduced
from the generalized eigenvectors of (Hg?σ,Hσ).

This is summarized in the following algorithm, which computes the decomposition
of σ, assuming a basis B ofAσ is known.
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Algorithm 4.5.1: Decomposition of polynomial-exponential series
Input: the (first) coefficients σα of a series σ ∈K[[y]] for α ∈ a ⊂ Nn and bases
B = {b1, . . . , br}, B = {b′1, . . . , b′r}, ofAσ such that 〈B′ · B+〉 ⊂ 〈x a〉.

1. Construct the matrices H0 = (〈σ | b′i b j〉)1¶i, j¶r (resp. Hk = (〈σ | xk b′i b j〉)1¶i, j¶r) of
Hσ (resp. Hxk?σ

) in the basis B ofAσ;

2. Take a separating linear form l(x ) = l1 x1 + · · ·+ ln xn and construct
Hl =

∑n
i=1 liHi = (〈σ | l b′i b j〉)1¶i, j¶r;

3. Compute bases Bi, i = 1, . . . , r ′ of the generalized eigenspaces of (Hl , H0);

4. For each basis Bi = {bi,1, . . . , bi,µi
}, compute Ui = (〈σ | bi,k〉)k=1,...,µi

and
u i = (HBi ,Bi

σ
)−1Ui;

5. Compute common eigenvectors v i ∈ 〈Bi〉 i = 1, . . . , r ′ of all the pencils (Hk, H0),
k = 1, . . . , n and ξi = (ξi,1, . . . ,ξi,n) such that (Hk − ξi,kH0)v i = 0;

6. Compute ωi(y) =
∑

α∈Nn〈u i ?σ | (x − ξi)α〉
yα

α! ;

Output: the decomposition σ(y) =
∑r

i=1ωi(y)eξi
(y).

To apply this algorithm, one need to compute a basis B ofAσ such that σ is defined
on B · B+ where B+ = ∪n

i=1 x iB ∪ B. In Section 4.6, we will detail an efficient method to
compute such a basis B and a characterization of the sequences (σα)α∈A, which admits a
decomposition of rank r.

The second step of the algorithm consists in taking a linear form l(x ) = l1 x1 + · · ·+
ln xn, which separates the roots in the decomposition (l(ξi) 6= l(ξ j) if i 6= j). A generic
choice of l yields a separating linear form. This separating property can be verified a
posteriori, by checking that there are r distinct generalized eigenvalues. Notice that we
only need to compute the matrix Hl ofHl?σ in the basis B ofAσ and not necessarily all
the matrices Hk.

The third step is the computation of generalized eigenvectors of a Hankel pencil. The
other steps involve the application of σ on polynomials in B+.

The fifth step computes eigenvectors v1, . . . , v r common to all the pencil of matrices.
Efficient methods as in [GT09] can be used to computed them from 〈Bi〉 when the eigen-
value is not simple. In the case of a simple eigenvalue, step 5 can be removed since the
vector u i computed in step 4 or the element bi,1 in the basis B′i is a common eigenvector.

In step 6, only a finite number of terms 〈u i ?σ|(x −ξi)α〉 need to be computed. If the
weightωi is are constant, its computation in the last step can be replaced byωi = 〈σ|u i〉.

Notice that the weights ωi are recovered directly from the polynomials u i and that it
is not necessary to solve a Vandermonde linear system to compute them as in the pencil
method (see Section 1.1).
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4.5.1 Example

We illustrate the method on a sequence σα obtained by evaluation of a sum of exponen-
tials on a grid.

We consider the function h(u1, u2) = 2+ 3 · 2u12u2−3u1 . Its associated generating
series is σ =

∑

α∈N2 h(α) yα

α! . Its (truncated) moment matrix is

H
[1,x1,x2,x2

1 ,x1 x2,x2
2]

σ =















h(0, 0) h(1,0) h(0, 1) · · ·
h(1, 0) h(2,0) h(1, 1) · · ·
h(0, 1) h(1,1) h(0, 2) · · ·

...
...

...
...

...
...















=















4 5 7 5 11 13
5 5 11 −1 17 23
7 11 13 17 23 25
5 −1 17 −31 23 41
11 17 23 23 41 47
13 23 25 41 47 49















We compute B = {1, x1, x2}. The generalized eigenvalues of (Hx1?σ
, Hσ) are [1,2, 3] and

corresponding eigenvectors are represented by the columns of

u :=





2 −1 0
−1

2 0 1
2

−1
2 1 −1

2



 ,

associated to the polynomials u(x) = [2− 1
2 x1−

1
2 x2,−1+ x2, 1

2 x1−
1
2 x2]. By computing

the Hankel matrix

H[1,x1,x2],u
σ

=





〈σ|u1〉 〈σ|u2〉 〈σ|u3〉
〈σ|x1u1〉 〈σ|x1u2〉 〈σ|x1u3〉
〈σ|x2u1〉 〈σ|x2u2〉 〈σ|x2u3〉



=





2 3 −1
2×1 3×2 −1×3
2×1 3×2 −1×1





we deduce the weights 2,3,−1 and the frequencies (1, 1), (2,2), (3,1), which corresponds
to the decomposition σ = e y1+y2 + 3e2y1+2y2 − e2y1+y2 and h(u1, u2) = 2+ 3 · 2u1+u2 − 3u1 .

4.5.2 Example

Consider the following symmetric tensor of order d = 4, that is in the vector space
K[x0, x1, x2][4] of homogeneous polynomials of degree d :

ψ = −x0
4 − 24 x0

3 x2 − 8 x0
3 x1 − 60 x0

2 x2
2 − 168 x0

2 x1 x2 − 12 x0
2 x1

2

−96 x0 x2
3 − 240 x0 x1 x2

2 − 384 x0 x1
2 x2 + 16 x0 x1

3

−46 x2
4 − 200 x1 x2

3 − 228 x1
2 x2

2 − 296 x1
3 x2 + 34 x1

4

By apolarity (see Section 1.2.2), we associate to ψ the dual element ψ∗ : p 7→ 〈ψ, p〉d ∈
K[x ][d]

?. The Hankel matrix associated toψ∗ in degree 2,2 for the set B = {1, x1, x2, x2
1 , x1 x2, x2

2}
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indexing the rows and columns is

H2,2
ψ∗

:=































-1 -2 -6 -2 -14 -10

-2 -2 -14 4 -32 -20

-6 -14 -10 -32 -20 -24

−2 4 −32 34 −74 −38

−14 −32 −20 −74 −38 −50

−10 −20 −24 −38 −50 −46































For B = {1, x1, x2},

HB,B
ψ∗
=







−1 −2 −6

−2 −2 −14

−6 −14 −10







HB,x1B
ψ∗

=






−2 −2 −14

−2 4 −32

−14 −32 −20







HB,x2B
ψ∗

=






−6 −14 −10

−14 −32 −20

−10 −20 −24







The matrix of multiplication by x2 in B = {1, x1, x2} is

M2 = (H
B,B
ψ∗
)−1HB,x2B

ψ∗
=







0 −2 −2

0 1
2

3
2

1 5
2

3
2






.

Its eigenvalues are [−1,1, 2] and the eigenvectors:

U :=







0 2 −1
1
4 −3

4
1
2

−1
4 −1

4
1
2






.

that is the polynomials U(x) =
�

1
4 x1 −

1
4 x2 2− 3

4 x1 −
1
4 x2 −1+ 1

2 x1 +
1
2 x2

�

. We
deduce the weights and the frequencies:

H[1,x1,x2],U
ψ∗

=







1 1 −3

1× 3 1× 1 −3× 2

1×−1 1× 1 −3× 2






.

This gives the weights 1, 1,−3 and the frequency points (3,−1), (1, 1), (2,2) correspond-
ing to the decomposition

ψ∗(y) = e(3,−1)(y) + e(1,1) − 3 e(2,2)(y) +O (y)4
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and the tensor decomposition

ψ= (x0 + 3 x1 − x2)
4 + (x0 + x1 + x2)

4 − 3 (x0 + 2 x2 + 2 x2)
4

4.6 Border basis, orthogonal polynomials

An important step in the decomposition method consists in computing a basis B of Aσ.
In this section, we describe how to compute a monomial basis B = {xβ} and two other
bases p= (pβ) and q= (qβ), which are pairwise orthogonal for the inner product 〈·, ·〉σ:

〈pβ , qβ ′〉σ =
§

1 ifβ = β ′

0 otherwise .

Such pairwise orthogonal bases of Aσ exist, since Aσ is an Artinian Gorenstein algebra
and 〈·, ·〉σ is non-degenerate (Proposition 4.3.2).

To compute these pairwise orthogonal bases, we will use a projection process, similar
to Gram-Schmidt orthogonalization process. The main difference is that we compute
pairs pβ , qβ of orthogonal polynomials. As the inner product 〈·, ·〉σ may be isotropic, the
two polynomials pβ , qβ may not be equal, up to a scalar.

The method proceeds inductively starting from b= [], extending the monomials basis
b with new monomials xα, projecting them onto the space spanned by b:

pα = xα −
∑

β∈b

〈xα, qβ〉σpβ

and computing qα, if it exists, such that 〈pα, qα〉σ = 1 and 〈xβ , qα〉σ = 0 for β ∈ b. Here
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is a more detailled description of the algorithm:

Algorithm 4.6.1: Orthogonal bases
Input: the coefficients σα of a series σ ∈K[[y]] for α ∈ a ⊂ Nn.

Let b := []; b′ := []; d= []; n := [0]; s := a; s′ := a; l := 0;

while n 6= ; do
l := l + 1;

for each α ∈ n do

a) compute pα = xα −
∑

β∈B〈x
α, qβ〉σpβ ;

b) find the first α′ ∈ s′ such that xα
′
pα ∈ 〈a〉 and 〈xα′ , pα〉σ 6= 0;

c) if such an α′ exists then

let qα := 1
〈xα′ ,pα〉σ

�

xα
′ −
∑

β∈B〈x
α′ , pβ〉σqβ

�

;

add α to b; remove α from s;
add α′ to b′; remove α′ from s′;

else

add α to d;

end

n := next(b,d, s) ;

end

Output:

• monomial sets b= [β1, . . . ,βr] ⊂ a, b′ = [β ′1, . . . ,β ′r] ⊂ a.

• pairwise orthogonal bases p= (pβi
), q= (qβi

) for 〈·, ·〉σ.

• the relations pα := xα −
∑r

i=1〈x
α, qβi

〉σpβi
for α ∈ d.

The algorithm manipulates the ordered lists b,d, s, s′ of exponents, identified with
monomials. The monomials are ordered according to a total order denoted≺. The index
l is the loop index.

The algorithm uses the function next(b,d, s), which computes the set of monomials
α in ∂ b∩ s, which are not in d and such that α+ b′ ⊂ a.

We verify that at each loop of the algorithm, the lists b and s (resp. b′ and s′) are
disjoint and b∪ s= a (resp. b′ ∪ s′ = a).

We also verify by induction that at each loop, 〈xb〉 = 〈pβ | β ∈ b〉 and 〈xb′〉 = 〈qβ |
β ∈ b〉.
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The following properties are also satisfied at the end of the algorithm:

Theorem 4.6.1 Let b= [β1, . . . ,βr], b′ = [β ′1, . . . ,β ′r], p= [pβ1
, . . . , pβr

], q= [qβ1
, . . . , qβr

]
be the output of Algorithm 4.6.1. Let V = 〈xb+〉. If there exists a vector space V ′ connected
to 1 such that x(b

′)+ ⊂ V ′ and V · V ′ = 〈xa〉. Then σ coincides on 〈xa〉 with the unique series
σ̃ ∈K[[y]] such that σ̃|〈x a〉 = σ and rank Hσ̃ = r and we have the following properties:

• (p,q) are pairwise orthogonal bases ofAσ̃ for the inner product 〈·, ·〉σ̃.

• The family
�

pα = xα −
∑r

i=1〈x
α, qβi

〉σpβi
,α ∈ d

	

is a border basis of the ideal Iσ̃, with
respect to xb.

• The matrix of multiplication by xk in the basis p (resp. q) ofAσ̃ is Mk := (〈σ|xkpβ j
qβi
〉)1¶i, j¶r

(resp. M t
k).

Proof. By construction, V = 〈xb+〉 is connected to 1 and xb contains 1, otherwise σ = 0.
As V ′ contains xb′ and V · V ′ = 〈xa〉, we have ∀α ∈ ∂ b,xα · xb′ ⊂ xa. Thus when the
algorithm stops, we have n = ; and ∂ b = d. By construction, for α ∈ d the polynomials
pα = xα −

∑

β∈b〈x
α, qβ〉σpβ are orthogonal to 〈qβ | β ∈ b〉 = 〈xb′〉. As α ∈ d, for each

v′ ∈ V ′, we have moreover 〈pα, v′〉σ = 0.
A basis of V is formed by the polynomials pα for α ∈ b+ since 〈pβ | β ∈ b〉= 〈xb〉 and

pα = xα + bα with bα ∈ 〈xb〉 for α ∈ d= ∂ b. The matrix of HV,V ′
σ

in this basis of V and in
a basis of V ′, which first elements are qβ1

, . . . , qβr
, is of the form

HV,V ′

σ
=
�

Ir 0
∗ 0

�

where Ir is the identity matrix of size r. The kernel of HV,V ′
σ

is generated by the polyno-
mials pα for α ∈ d.

By Theorem 4.3.4, σ coincides on V · V ′ = 〈xa〉 with a series σ̃ such that xb is a basis
ofAσ̄ =K[x]/Iσ̃ and Iσ̃ = (ker HV,V ′

σ̃ ) = (pα)α∈d.
As pα = xα + bα with α ∈ ∂ b and bα ∈ 〈xb〉, (pα)α∈∂ b is a border basis with respect to

xb for the ideal Iσ̃, since xb is a basis of ofAσ̄.
This shows that rank Hσ̃ = dimAσ̃ = |b| = r. By construction, (p,q) are pairwise

orthogonal for the inner product 〈·, ·〉σ, which coincides with 〈·, ·〉σ̃ on 〈xa〉. Thus they
are pairwise orthogonal bases ofAσ̃ for the inner product 〈·, ·〉σ̃.

As we have xkpβ j
≡
∑r

i=1〈xkpβ j
, qβi
〉σpβi

, the matrix of multiplication by xk in the
basis p of Aσ̃ is Mk := (〈xkpβ j

, qβi
〉σ)1¶i, j¶r = (〈σ|xkpβ j

qβi
〉)1¶i, j¶r . Exchanging the role

of p and q, we obtain M t
k for the matrix of multiplication by xk in the basis q. �

Remark 4.6.2 If the polynomials pα, qα are at most of degree d, then only the coefficients
of σ of degree ¶ 2d + 1 are involved in this computation. In this case, the border basis and
the decomposition of the series σ as a sum of exponential polynomials can be computed from
these first coefficients.
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Remark 4.6.3 When the monomials in s are chosen according to a monomial ordering ≺,
the polynomials pα = xα + bα, α ∈ d are constructed in such a way that their leading term
is xα. They form a Gröbner basis of the ideal Iσ̃. To construct a minimal Gröbner basis of Iσ̃
for the monomial ordering ≺, it suffices to keep the elements pα with α ∈ d minimal for the
division.

Remark 4.6.4 The computation can be simplified, when 〈·, ·〉σ is semi-definite, that is, when
for all p ∈ 〈xa〉 such that p2 ∈ 〈xa〉, we have 〈p, p〉σ = 0 implies that∀α ∈ a with xαp ∈ 〈xa〉,
〈p,xα〉σ = 0. In this case, the algorithm constructs a family of orthogonal polynomials
p= [pβ1

, . . . , pβr
] and q= [qβ1

, . . . , qβr
] with qβi

= 1
〈pβi

,pβ i〉σ
pβi

and we have b= b′. Indeed,

in the while loop for each α ∈ n, either 〈pα, pα〉σ = 0, which implies that ∀α′ ∈ t with
xα
′
pα ∈ 〈xa〉, 〈xα′ , pα〉σ = 0, so that α ∈ d, or 〈pα, pα〉σ = 〈xα, pα〉σ 6= 0 and the first α′ ∈ t

such that 〈xα′ , pα〉σ is α′ = α ∈ b.
If K= R and σ is semi-definite positive, then the polynomials 1p

〈pβi
,pβ i〉σ

pβi
are classical

orthogonal polynomials for 〈·, ·〉σ.

We can now describe the decomposition algorithm of polynomial-exponential series,
obtained by combining the algorithm for computing bases of Aσ and the algorithm for
computing the frequency points and the weights:

Algorithm 4.6.2: Polynomial-Exponential decomposition
Input: the coefficients σα of a series σ ∈K[[y]] for α ∈ a ⊂ Nn.

• Apply Algorithm 4.6.1 to compute bases B = x b, B′ = x b′ ofAσ;

• if ∃V ′ ⊃ B′ s.t. 〈V ′ · B+〉= 〈xa〉 then
Apply Algorithm 4.5.1.

Output: the polynomial-exponential series
∑r

i=1ωi(y)eξi
(y) with ωi(y) ∈K[y],

ξi ∈Kn with the same Taylor coefficients σα as σ for α ∈ a ⊂ Nn.

4.6.1 Examples

Example 4.6.5 Let n= 1 and σ(y) = yd

d! ∈K[[y]] with 0< d and a 6= 0 ∈K.
In the first step of the algorithm, we take p1 = 1 and compute the first i such that

〈x i, p1〉σ is not zero. This yields b= [1], b′ = [x d] and q1 = x d .
In a second step, we have px = x − 〈x , q1〉σp1 = x. The first i such that 〈x i, px〉σ is not

zero yields b= [1, x], b′ = [x d , x d−1] and qx = x d−1 − 〈x d−1, p1〉σq1 = x d−1.
We repeat this computation until b = [1, . . . , x d], b′ = [x d , x d−1, . . . , 1] with px i = x i,

qx i = x d−i for i = 0, . . . , d.
In the following step, we have pxd+1 = x d+1−〈x d+1, q1〉σp1−· · ·−〈x d+1, qxd 〉σpxd = x d+1.

The algorithm stops and outputs b= [1, . . . , x d], b′ = [x d , x d−1, . . . , 1], pxd+1 = x d+1.
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Example 4.6.6 We consider the function h(u1, u2) = 2+ 3 · 2u12u2−3u1 . Its associated
generating series is σ =

∑

α∈N2 h(α) yα

α! . Its (truncated) moment matrix is

H
[1,x1,x2,x2

1 ,x1 x2,x2
2]

σ =















h(0, 0) h(1,0) h(0, 1) · · ·
h(1, 0) h(2,0) h(1, 1) · · ·
h(0, 1) h(1,1) h(0, 2) · · ·

...
...

...
...

...
...















=















4 5 7 5 11 13
5 5 11 −1 17 23
7 11 13 17 23 25
5 −1 17 −31 23 41
11 17 23 23 41 47
13 23 25 41 47 49















.

At the first step, we have b = [1], p = [1], q =
�

1
4

�

. At the second step, we compute
b = [1, x1, x2], p = [1, x1 −

5
4 , x2 +

9
5 x1 − 4] = [p1, px1

, px2
] and q =

�

1
4 p1,−4

5 px1
, 5

24 px2

�

.
At the third step, d = [x2

1 , x1 x2, x2
2] and the algorithm stops. We obtain the following

generators of ker Hσ:

px2
1
= x2

1 + x2 − 4x1 + 2

px1 x2
= x1 x2 − 2x2 − x1 + 2

px2
2
= x2

2 − 3x2 + 2

We have modulo ker Hσ:

x1 p1 ≡
∑

i

〈x1p1,q i〉σ p i =
5
4

p1 + p2

x1 p2 ≡
∑

i

〈x1p2,q i〉σ p i = −
5
16

p1 +
91
20

p2 − p3

x1 p3 ≡
∑

i

〈x1p3,q i〉σ p i =
96
25

p2 +
1
5

p3

The matrix of multiplication by x1 in the basis p is

M1 =





5
4 − 5

16 0
1 91

20
96
25

0 −1 1
5





Its eigenvalues are [1, 2,3] and the corresponding matrix of eigenvectors is

U :=





1
2

3
4 −1

4
2
5 −9

5
7
5

−1
2 1 −1

2



 ,

that is, the polynomials U(x) = [2− 1
2 x1 −

1
2 x2,−1+ x2, 1

2 x1 −
1
2 x2]. By computing the

Hankel matrix

HU ,[1,x1,x2]
σ

=





2 3 −1
2×1 3×2 −1×3
2×1 3×2 −1×1
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we deduce the weights 2, 3,−1 and the frequencies (1,1), (2, 2), (3, 1), which corresponds to
the decompositionσ = e y1+y2+3e2y1+2y2−e2y1+y2 associated to h(u1, u2) = 2+3·2u1+u2−3u1 .

4.7 Structured low rank decomposition of Hankel
operators

In this section, m= 1 and we consider Hankel operators associated to symbolsσ ∈K[x ]?.

4.7.1 Simple roots

Let σ =
∑r

i=1ωieξi
withωi ∈K\{0}. Let us recall other relations between the structured

matrices involved in this decomposition problem, that are useful to analyse the numer-
ical behavior of the method. For more details, see e.g. [MP00]. Such decompositions,
referred as Carathéodory-Fejér-Pisarenko decompositions in [YXS15]. They can be used
to recover the decomposition of the series in Pencil-like methods.

Definition 4.7.1 Let B = {b1, . . . , br} be a family of polynomials. We define the B-Vandermonde
matrix of the points ξ1, . . . ,ξr ∈ Cn as

VB,ξ = (〈eξ j
|bi〉)1≤i, j≤r = (bi(ξ j))1≤i, j≤r .

By remark 3.3.3, if {eξ1
, . . . , eξr

} is a basis of A ∗
σ

and B is a basis of Aσ, then VB,ξ is
the matrix of coefficients of eξ1

, . . . , eξr
in the dual basis of B in A ∗

σ
and it is invertible.

Conversely, if {eξ1
, . . . , eξr

} is a basis of A ∗
σ

, we check that VB,ξ is invertible and that
B = {b1, . . . , br} is a basis ofAσ.

Proposition 4.7.2 Suppose that σ =
∑r

k=1 ωkeξk
(y) with ξ1, . . . ,ξr ∈ Kn pairwise dis-

tinct and ω1, . . . ,ωr ∈ K \ {0}. Let Dω = diag(ω1, . . . ,ωr) be the diagonal matrix associ-
ated to the weights ωi and for g ∈ K[x ], let Dg = diag(g(ξ1), . . . , g(ξr)) be the diagonal
matrices associated to g(ξ1), . . . , g(ξr). For any family B, B′ of K[x ], we have

HB,B′
σ

= VB′,ξDωV t
B,ξ

HB,B′
g?σ = VB′,ξDωDg V t

B,ξ = VB′,ξDg DωV t
B,ξ

If moreover B is a basis ofAσ, then VB,ξ is invertible and

(M B
g )

t = VB,ξDg V−1
B,ξ

Proof. If σ =
∑r

k=1 ωkeξk
(y) and B = {b1, . . . , br}, B′ = {b′1, . . . , b′r} are bases of Aσ,

then

HB,B′

σ
=

�

r
∑

k=1

ωk b′i(ξk)b j(ξk)

�

i, j=1,...,r

= VB′,ξDωV t
B,ξ.
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By a similar explicit computation, we check that HB,B′
g?σ = VB′,ξDωDg V t

B,ξ. Equation (4.3)
implies that (M B

g )
t = HB,B

g?σ(H
B,B
σ
)−1 = VB,ξDg V−1

B,ξ. �

4.7.2 Multiple roots

The relations between Vandermonde matrices and Hankel matrices (Proposition 4.7.2)
can be generalized to the case of multiple roots. Letσ =

∑r ′

k=1 ωk(y)eξk
(y)with ξ1, . . . ,ξr ′ ∈

Kn pairwise distinct, ω1(y), . . . ,ωr ′(y) ∈K[y]\{0}. To deduce a decomposition of HB,B′
σ

similar to the decomposition of Proposition 4.7.2 for multiple roots, we introduce the
Wronskian of a set B = {b1, . . . , bl} ⊂ K[x ] and a set of exponents Γ = {γ1, . . . ,γs} ⊂ Nn

at a point ξ ∈Kn:

WB,Γ ,ξ =

�

1
γ j!
∂ γ j(bi)(ξ)

�

1¶i¶r,1¶ j¶s

.

For a collection Γ = {Γ1, . . . , Γr ′} with Γ1, . . . , Γr ′ ⊂ Nn and points ξ= {ξ1, . . . ,ξr ′} ⊂Kn let

WB,Γ ,ξ = [WB,Γ1,ξ1
, . . . , WB,Γr′ ,ξr′

]

be the matrix obtained by concatenation of the columns of WB,Γk ,ξk
, k = 1, . . . , r ′.

We consider the monomial decomposition ωk(y) =
∑

α∈Ak
ωk,α(x − ξk)α with ωk,α 6=

0. We denote by Γk the set of all the exponents α ∈ Ak in this decomposition and all their
divisors β = (β1, . . . ,βn) with β � α. Let us denote by γ1, . . . ,γsk

the elements of Γk.
Let ∆Γk

ωk
= [(γi + γ j)!ωk,γi+γ j

]1¶i, j¶sk
with the convention that ωk,γi+γ j

= 0 if γi + γ j 6
∈Ak is not a monomial exponent of ωk(y). Let ∆Γω be the block diagonal matrix, which
diagonal blocks are ∆Γk

ωk
, k = 1, . . . , r ′.

The following decomposition generalizes the Carathéodory-Fejér decomposition in
the case of multiple roots (it is also implied by rank deficiency conditions):

Proposition 4.7.3 Suppose that σ =
∑r ′

k=1 ωk(y)eξk
(y) with ξ1, . . . ,ξr ′ ∈ Kn pairwise

distinct,ω1(y), . . . ,ωr ′(y) ∈K[y]\{0}. For g ∈K[x ], gþω= [g(ξ1+∂y)(ω1), . . . , g(ξr ′+
∂y)(ωr ′)]. For any set B, B′ ⊂K[x ] of size l, we have

HB,B′
σ

= WB′,Γ ,ξ∆
Γ
ωW t

B,Γ ,ξ

HB,B′
g?σ = WB′,Γ ,ξ∆

Γ
gþωW t

B,Γ ,ξ

If moreover B is a basis of Aσ, then WB′,Γ ,ξ and ∆Γω are invertible and the matrix of multi-
plication by g in the basis B ofAσ is

M B
g = W−t

B,Γ ,ξ(∆
Γ
ω)
−1∆gþωW−t

B,Γ ,ξ.
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Proof. By the relation (2.3), we have

HB,B′

σ
=

�

r ′
∑

k=1

ωk(∂x1
, . . . ,∂xn

)(b′i b j)(ξk)

�

1¶i, j¶l

.

By expansion, we obtain

ωk(∂x1
, . . . ,∂xn

)(b′i b j)(ξk) =
∑

α∈Ak

ωk,α∂
α
x (b

′
i b j)(ξk).

By Leibniz rule, we have

∂ αx (b
′
i b j) =

∑

β�α

α!
β!(α− β)!

∂ βx (b
′
i)∂

α−β
x (b j) = α!

∑

β�α

∂ βx (b
′
i)

β!

∂ α−βx (b j)

(α− β)!
.

We deduce that

ωk(∂x1
, . . . ,∂xn

)(b′i b j)(ξk) =
∑

α∈Ak

ωk,α∂
α
x (b

′
i b j)(ξk)

=
∑

α∈Ak

α!ωk,α

∑

β�α

∂ βx (b
′
i)

β!
(ξk)

∂ α−βx (b j)

(α− β)!
(ξk)

= WB′,Γk ,ξk
∆Γk
ωk

W t
B,Γk ,ξk

.

By concatenation of the columns of WB,Γk ,ξk
and WB′,Γk ,ξk

, using the block diagonal matrix
∆Γω, we obtain the decomposition of HB,B′

σ
=WB′,Γk ,ξk

∆Γk
ωk

W t
B,Γk ,ξk

.
By Lemma 2.2.5, we have

g ?σ =
r ′
∑

k=1

g(ξk + ∂y)(ωk)eξk
=

r ′
∑

k=1

(g þω)keξk
.

Thus, a similar computation yields the decomposition: HB,B′
g?σ =WB′,Γ ,ξ∆

Γ
gþωW t

B,Γ ,ξ.
If B is a basis ofAσ, then by Proposition 4.3.2, HB,B

σ
is invertible, which implies that

WB′,Γ ,ξ and ∆Γω are invertible. By Relation (4.3), we have

M B
g = (H

B,B
σ
)−1HB,B

g?σ =W−t
B,Γ ,ξ(∆

Γ
ω)
−1∆gþωW−t

B,Γ ,ξ.

�

4.8 Real positive series

In the case where all the coefficients ofσ are inR, we can consider the following property
of positivity:
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Definition 4.8.1 An elementσ ∈ R[[y]] = R[x ]∗ is semi-definite positive if∀p ∈ R[x ], 〈p, p〉σ =
〈σ|p2〉¾ 0. It is denoted σ ¼ 0.

The positivity ofσ induces a nice property of its decomposition, which is an important
ingredient of polynomial optimisation. It is saying that a positive measure on Rn with
an Hankel operator of finite rank r is a convex combination of r distinct Dirac measures
of Rn. See e.g. [Lau09] for more details. For the sake of completeness, we give here a
simple proof (see also [LLM+13][prop. 3.14]).

Proposition 4.8.2 Let σ ∈ R[[y]] of finite rank. Then σ ¼ 0, if and only if,

σ =
r
∑

i=1

ωi eξi

with ωi > 0, ξi ∈ Rn.

Proof. If σ =
∑r

i=1ωi eξi
with ωi > 0, ξi ∈ Rn, then clearly ∀p ∈ R[x ],

〈σ | p2〉=
r
∑

i=1

ωi p2(ξi)¾ 0

and σ ¼ 0.
Conversely suppose that ∀p ∈ R[x ], 〈σ | p2〉 ¾ 0. Then p ∈ Iσ, if and only if,

〈σ | p2〉 = 0. We check that Iσ is real radical: If p2k +
∑

j q2
j ∈ Iσ for some k ∈ N,

p, q j ∈ R[x ] then

〈σ | p2k +
∑

j

q2
j 〉= 〈σ | p

2k〉+
∑

j

〈σ | q2
j 〉= 0

which implies that 〈σ | (pk)2〉 = 0 , 〈σ | q2
j 〉 = 0 and that pk, q j ∈ Iσ. Let k′ = d k

2e. We

have 〈σ | (pk′)2〉 = 0, which implies that pk′ ∈ Iσ. Iterating this reduction, we deduce
that p ∈ Iσ. This shows that Iσ is real radical and V (Iσ) ⊂ Rn. By Proposition 4.3.3,
we deduce that σ =

∑r
i=1ωi eξi

with ωi ∈ C \ {0} and ξi ∈ Rn. Let u i ∈ R[x ] be a
family of interpolation polynomials at ξi ∈ Rn: u i(ξi) = 1, u i(ξ j) = 0 for j 6= i. Then
〈σ | u2

i 〉=ωi ∈ R+. This proves that σ(y) =
∑r

i=1ωi eξi
(y) with ωi > 0, ξi ∈ Rn. �
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5.1 Sparse decomposition from generating series

To exploit the previous results in the context of functional analysis or signal processing,
we need to transform functions into series or sequences in KN

n
. Here is the general

context that we consider, which extends the approach of [PP13] to multi-index sequences.
We assume that K is algebraically close.

• Let F be a functional space (in which “leaves the functions, distributions or sig-
nals”).

• Let S1, . . . , Sn : F → F be linear operators of F , which are commuting: Si ◦ S j =
S j ◦ Si.

• Let ∆ : h ∈ F 7→∆[h] ∈K be a linear functional on F .

We associate to an element h ∈ F , its generating series:

Definition 5.1.1 For h ∈ F , the generating series associated to h is

σh(y) =
∑

α∈Nn

1
α!
∆[Sα(h)]yα (5.1)

where Sα = Sα1
1 ◦ · · · ◦ Sαn

n for α= (α1, . . . ,αn) ∈ Nn.

69
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Definition 5.1.2 We say that the regularity condition is satisfied if the map h ∈ F 7→
σh(y) ∈K[[y]] is injective.

We are interested in the decomposition of a function h ∈ F in terms of (generalized)
eigenfunctions of the operators Si. An eigenfunction of the operators Si is a function
E ∈ F such that S j(E) = ξ j E for j = 1, . . . , n with ξ = (ξ1, . . . ,ξn) ∈ Kn. Generalized
eigenfunctions of the operators Si are functions E1, . . . , Eµ ∈ F such that S j(Ek) = ξ j Ek+
∑

k′<k m j,k′Ek′ for k = 1, . . . ,µ and ξ1, . . . ,ξn ∈K.
The following proposition shows that if a function is a linear combination of general-

ized eigenfunctions, then its generating series is a sum of polynomial-exponential series.

Theorem 5.1.3 Let S1, . . . , Sn be commuting operators ofF . Let E1,1, . . . , E1,µ1
, . . . , , Er,1, . . . , Er,µr

∈
F be generalized eigenfunctions of S1, . . . , Sn such that for i = 1, . . . , r, j = 1, . . . , n,
k = 1, . . . ,µi,

S j(Ei,k) = ξi, j Ei,k +
∑

k′<k

mi, j
k′,kEi,k′

with ξi = (ξi,1, . . . ,ξi,n) ∈ Kn pairwise distinct. If h =
∑r

i=1

∑µi

k=1 hi,kEi,k, then the gener-
ating series σh has a unique decomposition as:

σh(y) =
r
∑

i=1

ωi(y) eξi
(y)

where ωi(y) ∈ K[y]. If the regularity condition is satisfied, the decomposition uniquely
determines the coefficients hi,k of the decomposition of h ∈ F .

Proof. By Lemma 2.2.4, in a decomposition of series as a polynomial-exponential func-
tion

∑r
i=1ωi(y) eξi

(y), the polynomials ωi(y) ∈ K[y] and the support {ξ1, . . . ,ξr} are
unique. Let Ni, j = S j − ξi, j Id be the linear operator of ei = 〈Ei,1, . . . , Ei,µi

〉 such that
Ni, j(E j,k) =

∑

k′<k mi
j,k′E j,k′ . By construction, Ni, j is nilpotent of order ¶ µi + 1 and its

matrix in the basis {Ei,1, . . . , Ei,µi
} of ei is (mi, j

k,k′)k,k′ (with mi, j
k,k′ = 0 if k ¾ k′). As the

operators S j restricted to ei are ξi, j Id+Ni, j and commute, we deduce that the opera-
tors Ni, j commute for j = 1, . . . , n. By the binomial expansion of Sα = Sα1

1 · · ·S
αn
n for

α= (α1, . . . ,αn) ∈ Nn and the commutation of the matrices Ni, j, we have

Sα(Ei,k) =
∑

β�α,β j¶µ j

�

α

β

�

ξ
α−β
i Nβ

i (Ei,k),

where
�

α

β

�

=
�

α1
β1

�

· · ·
�

αn
βn

�

and Nβ

i = Nβ1
i,1 · · ·N

βn
i,n . As Ni, j is nilpotent of order µi+1, this sum

involves at most (µi + 1)n terms such that β j ¶ µ j, j = 1, . . . , n.
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The generating series of Ei,k is then

σEi,k
(y) =

∑

α∈Nn

∑

β�α,β j¶µ j

∆[Nβ

i (Ei,k)]
�

α

β

�

ξ
α−β
i

yα

α!

=
∑

βi¶µi

∆[Nβ

i (Ei,k)]
yβ

β!

∑

α′∈Nn

ξα
′

i

yα
′

α′!

=
∑

βi¶µi

∆[Nβ

i (Ei,k)]
yβ

β!
eξi
(y) =ωi,k(y)eξi

(y),

using the relation 1
α!

�

α

β

�

= 1
β!

1
(α−β)! , exchanging the summation order and setting α′ =

α − β . We deduce that if h =
∑r

i=1

∑µi

k=1 hi,kEi,k, then σh(y) =
∑r

i=1ωi(y)eξi
(y) with

ωi(y) =
∑

k hi,kωi,k(y) ∈K[y]. If the regularity condition is satisfied, the map h ∈ F 7→
σh(y) ∈ K[[y]] is injective and the polynomials ωi,k(y) k = 1, . . . ,µi are linearly inde-
pendent. Therefore, the coefficients hi,k, k = 1, . . . ,µi are uniquely determined by the
polynomial ωi(y) =

∑

k hi,kωi,k(y). �

Definition 5.1.4 We say that the completness condition is satisfied if for any polynomial-
exponential series ω(y)eξ(y) with ω(y) ∈ K[y] and ξ ∈ Kn, there exists a linear com-
bination h ∈ F of generalized eigenfunctions of the operators Si, such that its generating
function is ω(y)eξ(y).

Under the completness condition and the regularity condition, any function h ∈ F
with a generating series of finite rank can be decomposed into a linear combination of
eigenfunctions. We analyse several cases, for which this framework applies.

5.2 Convolution of finite rank

Let E = C∞(Rn), S be the set of functions in E with fast decrease at infinity (∀ f ∈
S ,∀p ∈C[x ], |p f | is bounded onRn), OM be the set of functions in E with slow increase
at infinity (∀ f ∈ OM , | f (x )| < C(1 + |x |)N for some C ∈ R, N ∈ N), E ′ be the set of
distributions with compact support (dual to E), S ′ be the set of tempered distribution
(dual to S ) and O ′C be the space of distributions with rapid decrease at infinity (see
[Sch66]).

In this problem, we consider the following space and operators:

• F = O ′C is the space of distributions with rapid decrease at infinity;

• Si : h(x ) ∈ O ′C 7→ x ih(x ) ∈ O ′C is the multiplication by x j;

• ∆ : h(x ) ∈ O ′C 7→
∫

h(x )dx ∈C.
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For any h ∈ O ′C , for any α ∈Nn,

∆[Sα(h)] =

∫

xαh(x )dx

is the αth moment of h. For h ∈ O ′C and σh =
∑

α∈Nn

∫

h(x )xα yα

α! dx its generating series,
we verify that ∀p ∈C[x ], 〈σh | p〉=

∫

h(x )p(x )dx (i.e. the distribution h applied to p).
We check that

• the operators S j are well defined and commute

• a Dirac measure δξ with ξ = (ξ1, . . . ,ξn) ∈ Cn is an eigenfunction of S j: S j(δξ) =
ξ jδξ. Similarly for α= (α1, . . . ,αn) ∈Nn and

• the Dirac derivation δ(α)
ξ

(∀ f ∈ C∞(Ω), 〈δ(α)
ξ

, f 〉 = (−1)|α|∂ α1
x1
· · ·∂ αn

xn
( f )(ξ)) satis-

fies
Si(δ

(α)
ξ
) = x iδ

(α)
ξ
= ξiδ

(α)
ξ
+δ(α−ei)

ξ

with the convention that δ(α−ei)
ξ

= 0 if αi = 0. It is a generalized eigenfunction of
the operators S j.

By the relation (5.2), the generating series of δ(α)
ξ

is

σ
δ
(α)
ξ
= 〈δ(α)

ξ
, ex ·y〉= yαeξ(y).

This shows that the completeness condition is satisfied.
To check the regularity condition, we use the Fourier transform F : f ∈ OM 7→

∫

f (x )e−i x ·zdx ∈ O ′C . It is a bijection between OM and O ′C (see [Sch66][Théorème XV]).
Its inverse is F−1 : f ∈ O ′C 7→ (2π)

n
∫

f (x )ei x ·zdx ∈ OM . Let ι : f (y) ∈ C[[y]] 7→
f (i y) ∈C[[y]].

The generating series of f ∈ O ′C is

σ f (i y) = ι ◦σ f (y) =
∑

α∈Nn

∫

f (x )xα
i |α|yα

α!
dx =

∫

f (x )e i x ·y dx = (2π)nF−1( f ). (5.2)

This shows that the map f ∈ O ′C 7→ σ f ∈C[[y]] is injective and the regularity condition
is satisfied.

For f ∈ O ′C , the Hankel operator Hσ f
is such that ∀g ∈C[x ],

Hι◦σ f
(g) =

∑

α∈Nn

∫

f (x )g(x )xα
i |α|yα

α!
dx

=

∫

f (x )g(x )e i x ·y dx = (2π)nF−1( f g).
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Using Relation (5.2), we rewrite it as ∀g ∈C[x ],

HF−1( f )(g) =F−1( f g) (5.3)

with ϕ =F−1( f ) ∈ OM .
From this relation, we see that the operator HF−1( f ) can be extended by continuity to

an operator HF−1( f ) : OM 7→ OM .
The Hankel operator Hι◦σ (or HF−1( f )) can be related to integral operators on func-

tions defined in terms of convolution products or cross-correlation. For ϕ ∈ S ′, the
convolution with a distribution ψ ∈ O ′C is well-defined [Sch66]. The convolution opera-
tor associated to ϕ on O ′C is:

Hϕ :ψ ∈ O ′C 7→ ϕ ?ψ=
∫

ϕ(x − t )ψ(t )d t ∈ S ′.

The image of an element ψ ∈ O ′C is a tempered distribution in S ′. The distribution ϕ is
the symbol of the operator Hϕ.

Using the property that ∀ϕ ∈ S ′,∀ψ ∈ O ′C ,F (ϕ ? ψ) = F (ϕ)F (ψ) ∈ S ′ and the
relation (5.3), we have for any ψ ∈ O ′C ,

HF−1( f )(g) =F−1( f g) = ϕ ?ψ= Hϕ(ψ),

with f =F (ϕ) ∈ S ′, g =F (ψ) ∈ OM . We deduce that

Hϕ = Hϕ ◦F (5.4)

with Hϕ : g ∈ OM 7→ F−1(F (ϕ)g) ∈ S ′.
In the case where ϕ ∈ P olE x p ∩OM , the operator is of finite rank:

Proposition 5.2.1 Let ϕ = ω(y)e iξ(y) with ω ∈ C[y] and ξ ∈ Rn. Then rankHϕ ¶
µ(ω).

Proof. By Taylor expansion of the polynomial ω at x , we have ∀ψ ∈ O ′C

Hϕ(ψ) =

∫

ω(x − t )eiξ·(x−t )ψ(t )d t

=
∑

α∈Nn

∂ α(ω)(x )eiξ·x

∫

(−1)α
tα

α!
ψ(t )e−iξ·t d t .

This shows that Hϕ(ψ) belongs to the space spanned by ∂ α(ω)(x )eξ·x for α ∈Nn, which
is of dimension µ(ω) and thus rank Hϕ ¶ µ(ω). �

The converse is also true:
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Theorem 5.2.2 Suppose that ϕ ∈ S ′ is such that the convolution operator Hϕ is of finite
rank r. Then its symbol ϕ is of the form

ϕ =
r ′
∑

i=1

ωi(y)e iξi
(y).

with ξi = (ξi,1, . . . ,ξi,n) ∈Rn,ωi(y) ∈C[y]. The rank r of Hϕ is the sum of the dimension
of the vector spaces spanned by ωi(y) and all its derivatives ∂ γyωi(y), γ ∈Nn.

Proof. Since F is a bijection between O ′C and OM , the relation (5.4) implies that Hϕ is
of finite rank r, if and only if, Hϕ : OM 7→ OM is of rank r. As the restriction of Hϕ to the
set of polynomials C[x ] ⊂ OM is of rank r̃ ≤ r = rankHϕ, Theorem 4.2.2 implies that

ϕ =
r ′
∑

i=1

∑

α∈Ai

ωi,αyαeξ′i(y)

with ξ′i ∈ C
n distincts, Ai ⊂Nn finite and r̃ =

∑r ′

i=1µ(ωi) where µ(ωi) is the dimension
of the inverse system of ωi =

∑

α∈Ai
ωi,αyα, spanned by ωi(y) and all its derivatives. As

ϕ ∈ S ′ is a distribution with slow increase at infinity, we have ξ′i = iξi with ξi ∈Rn.

By Proposition 5.2.1, we have r = rankHϕ ¶
∑r ′

i=1µ(ωi) = r̃. This shows that

rankHϕ =
∑r ′

i=1µ(ωi) and concludes the proof of the theorem. �

We can derive a similar result for the convolution by functions or distributions with
support in a bounded domain Ω of Rn. The main ingredient is the decomposition Hϕ =
Hϕ◦F , which extends the construction used in [Roc87] for Hankel and Toeplitz operators
on L2(I) where I is a bounded interval in R.

By the generalized Paley-Wiener theorem (see [Sch66][Théorème XVI]), the Fourier
transformF is a bijection between the set E ′ of distributions with a compact support and
the set of continuous functions f ∈ C(Rn) with an analytic extension of exponential type
(there exists A∈R, C ∈R+ such that ∀z ∈Cn, | f (z)|¶ CeA(|z1|+···+|zn|)). Let us denote by
E ′(Ω) the set of distributions with a support in Ω, and by PW (Ω) = {F (ϕ) | ϕ ∈ E ′(Ω)}
the set of their Fourier transforms.

Theorem 5.2.3 Let Ω,Ξ be open bounded domains of Rn with , Υ = Ξ + Ω ⊂ Rn and
ϕ ∈ E ′(Ω). The convolution operator

Hϕ :ψ ∈ E ′(Ξ) 7→
∫

ϕ(x − t)ψ(t)dt ∈ E ′(Υ )

is of finite rank r, if and only if, the symbol ϕ is of the form

ϕ = 1Ω
r ′
∑

i=1

ωi(y)eξi
(y)
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where ξi = (ξi,1, . . . ,ξi,n) ∈ Cn, ωi(y) ∈ C[y]. The rank r of Hϕ is the sum of the dimen-
sions µ(ωi) of the vector spaces spanned by ωi(y) and all the derivatives ∂ γyωi(y), γ ∈Nn.

Proof. Using the relations ∀ϕ ∈ E ′(Ω),ψ ∈ E ′(Ξ),

F (ϕ ?ψ) =F (ϕ)F (ψ),

and (5.3), we still have the decomposition

Hϕ = Hϕ ◦F .

with Hϕ : g ∈ PW (Ξ)→F−1(F (ϕ)g) ∈ E ′(Υ ). Thus Hϕ is of finite rank r, if and only
if, Hϕ is of finite rank r. As the rank of the restriction of Hϕ toC[x ] ⊂ PW (Ξ) is at most
r, we conclude by using Theorem 4.2.2, a result similar to Proposition 5.2.1 for elements
ψ ∈ E ′(Ξ) and the relation F−1(F (ϕ)) = ϕ on Ω. �

Similar results also apply for the cross-correlation operator defined as

H̃ϕ :ψ ∈ E ′ 7→ ϕ ∗ψ=
∫

ϕ(x + t)ψ̄(t)dt ∈ S ′.

Using the relation F (ϕ ∗ψ) =F (ϕ)F̄ (ψ) (with F̄ = ς ◦F where ς : z ∈C 7→ z̄ ∈C is
the complex conjugation), we have H̃ϕ = Hϕ ◦ F̄ . As F̄−1 =F−1 ◦ ς, we deduce that H̃ϕ
and Hϕ have the same rank and the same type of decomposition of the symbol ϕ holds
when H̃ϕ is of finite rank.

Remark 5.2.4 To compute the decomposition of ϕ ∈ S ′ (resp. ϕ ∈ E ′(Ω)) as a polynomial
exponential function, we first compute the Taylor coefficients of σF (ϕ) = Hϕ(1), that is, the
valuesσα = (−i)|α|F (xαϕ)(0) for someα ∈ a ⊂Nn and apply the decomposition algorithm
4.6.2 to the (truncated) sequence (σα)α∈a.

5.3 Dirac measures from Fourier coefficients

We consider here the problem of reconstruction of functions or distributions from Fourier
coefficients. Let T = (T1, . . . , Tn) ∈Rn

+ and Ω=
∏n

i=1

�

−2πTi
2 , 2πTi

2

�

⊂Rn. We take:

• F = L2(Ω);

• Si : h(x ) ∈ L2(Ω) 7→ e2π
xi
Ti h(x ) ∈ L2(Ω) is the multiplication by e2π

xi
Ti ;

• ∆ : h(x ) ∈ O ′C 7→
∫

h(x )dx ∈C.
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For f ∈ E ′(Ω) with a support in Ω and γ = (γ1, . . . ,γn) ∈ Zn, the γ-th Fourier coefficient
of f is

σγ =
1

∏n
j=1 T j

F ( f )
�

2π
γ1

T1
, . . . , 2π

γn

Tn

�

=
1

∏n
j=1 T j

∫

f (x )e−2πi
∑n

j=1

γ j x j
Tj dx

Let σ = (σγ)γ∈Zn be the sequence of the Fourier coefficients. The discrete convolution

operator associated to σ is Φσ : (ρβ)β∈Zn ∈ L2(Zn) 7→
�

∑

β σα−βρβ

�

α∈Zn
∈ L2(Zn). The

discrete cross-correlation operator of σ is Γσ : (ρβ)β∈Zn ∈ L2(Zn) 7→
�

∑

β σα+βρβ

�

α∈Zn
∈

L2(Zn). It is obtained from Γσ by composition by R : (rβ)β∈Zn ∈ L2(Zn) 7→ (ρ−β)β∈Zn ∈
L2(Zn): Γσ = Φσ ◦R .

A decomposition similar to the previous section also holds:

Theorem 5.3.1 Let f ∈ L2(Ω) and let σ = (σγ)γ∈Zn be its sequence of Fourier coefficients.
The discrete convolution (resp. cross-correlation) operator Φσ (resp. Γσ) is of finite rank if
and only if

f =
r ′
∑

i=1

∑

α∈Ai⊂Nn

ωi,αδ
(α)
ξi

where

• ξi = (ξi,1, . . . ,ξi,n) ∈ Ω, ωi,α ∈C, Ai ⊂Nn is finite,

• the rank of Γσ is the sum of the dimensions µ(ωi) of the vector spaces spanned by
ωi(y) =

∑

α∈Ai
ωi,αyα and all the derivatives ∂ γy (ωi), γ ∈Nn.

Proof. Let S : f ∈ L2(Ω) 7→ (σγ)γ∈Zn ∈ L2(Zn) be the discrete Fourier transform

where σγ =
1

∏n
j=1 T j
F ( f )

�

2π γ1
T1

, . . . , 2π γn
Tn

�

. Its inverse is S−1 : σ = (σγ)γ∈Zn ∈ L2(Zn) 7→
∑

α∈Zn σγ1Ωe
2πi

∑n
j=1

γ j x j
Tj ∈ L2(Ω). As the discrete Fourier transform exchanges the convo-

lution and the product, using Relation (5.3), we have ∀σ,ρ ∈ L2(Zn),

Φσ(ρ) = S(S−1(σ)S−1(ρ)) = S( f g) = S ◦F ◦F−1( f g) = S ◦F ◦HF−1( f )(g)

where f = S−1(σ), g = S−1(ρ) ∈ L2(Ω) and HF−1( f ) : g ∈ L2(Ω) 7→ F−1( f g) ∈ PW (Ω).
We deduce that

Φσ = S ◦F ◦HF−1◦S−1(σ) ◦ S−1.

As S is an isometry between L2(Zn) and L2(Ω) and F is an isomorphism between L2(Ω)
and PW (Ω), Φσ = S ◦F ◦HF−1◦S−1(σ) ◦ S−1 and HF−1◦S−1(σ) have the same rank.

As C[x ] ⊂ PW(Ω), we deduce from Theorem 4.2.2 that

F−1 ◦ S−1(σ) =
r ′
∑

i=1

ω̃i(y)eξ̃i
(y)



5.4. POLYNOMIAL-EXPONENTIAL SUMS FROM VALUES 77

where ξ̃i = (ξ̃i,1, . . . , ξ̃i,n) ∈ Cn, ω̃i(y) =
∑

α∈Ai
ω̃i,αyα ∈ C[z]. Using a result similar

to Proposition 5.2.1 for the elements ψ ∈ L2(Ω), we deduce that the rank r of Φσ is
r =

∑r ′

i=1µ(ω̃i). Consequently,

f = S−1(σ) =F

�

r ′
∑

i=1

∑

α∈Ai

ω̃i,αyαeξ̃i
(y)

�

= (2π)n
r ′
∑

i=1

∑

α∈Ai⊂Nn

i |α|ω̃i,αδ
(α)
iξ̃i

.

As the support of f is in Ω, we have ξi = iξ̃i ∈ Ω. We deduce the decomposition of f
with ωi = (2π)n

∑r ′

i=1

∑

α∈Ai⊂Nn i |α|ω̃i,αyα.
The dimension µ(ω̃i) of the vector space spanned by ω̃i(y) =

∑

α∈Ai
ωi,αyα and all

its derivatives is the same as the dimension µ(ωi) of the space spanned by ωi(y) =
(2π)n

∑

α∈Ai
ωi,αi

|α|yα and all its derivatives, since ωi(y) = (2π)nω̃i(i y). Therefore,

rankΦσ = r =
∑r ′

i=1µ(ω̃i) =
∑r ′

i=1µ(ωi). This concludes the proof of the theorem. �

Remark 5.3.2 To compute the decomposition of f ∈ L2(Ω) as a weighted sum of Dirac
measures and derivates, we apply the decomposition algorithm 4.6.2 to the (truncated)
sequence of Fourier coefficients (σα)α∈a for some subset a ⊂Nn. The polynomial-exponential
decomposition ϕ =

∑r ′

i=1

∑

α∈Ai
ω̃i,αyαeξ̃i

(y), from which we deduce the decomposition f =

(2π)n
∑r ′

i=1

∑

α∈Ai⊂Nn i |α|ω̃i,αδ
(α)
iξ̃i

.

5.4 Polynomial-exponential sums from values

In this problem, we are interested in reconstructing a function in C∞(Rn) from sampled
values. We take

• F = C∞(Rn),

• S j : h(x) 7→ h(x1, . . . , x j−1, x j + 1, x j+1, . . . , xn) the shift operator of x j by 1,

• ∆ : h(x) 7→∆[h] = h(0) the evaluation at 0.

The generating series of h is

σh(y) =
∑

α∈Nn

h(α1, . . . ,αn)
yα

α!
=
∑

α∈Nn

h(α)
yα

α!
.

The operators S j are commuting and we have S j(e f ·x ) = ξ je
f ·x where f = ( f1, . . . , fn) ∈

Cn and ξ j = e f j . The generating series associated to e f ·x is eξ(y)where ξ= (ξ1, . . . ,ξn) =
(e f1 , . . . , e fn).
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Similarly for any α = (α1, . . . ,αn) ∈ N, S j(xαe f ·x ) = ξ j

∑α j

i=0

�

α j
i

�

x i
j

∏

i 6= j xαi
i e f ·x ,

which shows that the function xαe f ·x is a generalized eigenfunction of the operators
S j. Its generating series is

σxαe f ·x (y) =
∑

β∈Nn

βαξβ
yβ

β!
. (5.5)

Let bα(y) =
� y1
α1

�

· · ·
� yn
αn

�

be the Macaulay binomial polynomial with
� yi
αi

�

= 1
αi !

yi(yi −
1) · · · (yi −αi + 1), which roots are 0, . . . ,αi − 1. It satisfies the following relations:

∑

β∈Nn

bα(β)ξ
β yβ

β!
=
∑

β�α

bα(β)ξ
β yβ

β!
=
∑

β�α

1
α!
ξβ

yβ

(β −α)!
=

1
α!
ξαyαeξ(y).

As yα =
∑

α′�αmα′,αbα′(y) for some coefficients mα′,α ∈Q such that mα,α = 1, we have

σxαe f ·x (y) =

�

∑

α′�α

mα′,αξ
α′ y

α′

α′!

�

eξ(y) =ωα(y)eξ(y). (5.6)

The monomials of ωα(y) are among the monomials yα
′
= y

α′1
1 · · · y

α′n
n such that 0 ¶ α′i ¶

αi, which divide yα. As the coefficient of yα in ωα(y) is 1, we deduce that (ωα)α∈Nn is a
basis of C[y] and the completeness property is satisfied.

Let h= (h(α))α∈Nn . The Hankel operator Hh is such that ∀p =
∑

β pβ x β ∈C[x ],

Hh(p) =
∑

α∈Nn

 

∑

β

h(α+ β)pβ

!

yα

α!

Identifying the series σ(y) =
∑

α∈Nn σα
yα

α! ∈ C[[y]] with the multi-index sequence
(σα)α∈Nn and a polynomial p =

∑

α∈A pαxα with the sequence (pα)α∈Nn L0(Nn) of finite
support, the operator Hh corresponds to the discrete cross-correlation operator by the
sequence h. This operator can be extended to sequences h, p are in L2(Nn).

Theorem 5.4.1 Let h ∈ C∞(Rn). The discrete cross-correlation operator Γh : p ∈ L2(Nn) 7→
h ? p =

�

∑

β h(α+ β)pβ
�

α∈Nn
∈ L2(Nn) is of finite rank, if and only if,

h(x ) =
r ′
∑

i=1

gi(x )e
fi ·x + r(x )

where

• fi = ( fi,1, . . . , fi,n) ∈Cn, gi(x ) ∈C[x ],

• r(x ) ∈ C∞(Rn) such that r(α) = 0, ∀α ∈Nn,
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• The rank of Γh is the sum of the dimension µ(gi) of the vector space spanned by gi(x )
and all its derivatives ∂ αx gi, α ∈Nn.

Proof. Since Hh is of finite rank, Theorem 4.2.2 implies that

σh =
∑

α∈Nn

h(α)
yα

α!
=

r ′
∑

i=1

ωi(y)eξi
(y)

where ξi ∈ Cn, ωi(x ) ∈ C[x ] and rank Hσh
=
∑r ′

i=1µ(ωi). Let f i = ( fi,1, . . . , fi,n) ∈ Cn

such that ξi = (e fi,1 , . . . , e fi,n) and gi,α ∈C for α ∈ Ai ⊂Nn such that

ωi(y) =
∑

α∈Ai

gi,αωα(y).

By the relation (5.6), the generating series of r(x ) = h−
∑r

i=1

∑

α∈Ai
gi,αxαe f i ·x is 0, which

implies that r is a function in C∞(Rn) such that r(α) = 0, ∀α ∈Nn.
It remains to prove that the inverse systems spanned byωi(y) =

∑

α∈Ai
gi,αωα(y) and

by gi(x ) =
∑

α∈Ai
gi,αxα have the same dimension. The polynomials ωα are of the form

ωα(y) = yα +
∑

α′ 6=α,α′�α

ωα,α′ y
α′ ,

withωα,α′ ∈Q. Let ρ denotes the linear map ofC[y] such that ρ(yα) =ωα(y)− yα. We
choose a monomial ordering �, which is a total ordering on the monomials compatible
with the multiplication. Then, the initial in(ωα) of ωα, that is the maximal monomial of
the support of ωα, is yα since yα � in(ρ(yα)). As the support of ωα is in {α′,α′ � α},
the support of ∂ βωα (β ∈Nn) is {α′,α′� α− β} and the initial of ∂ βωα is ∂ β(xα). By
linearity, for any g ∈C[y], we have in(g)� in(ρ(g)). We deduce that

ωi(y) =
∑

α∈Ai

gi,αωα(y) =
∑

α∈Ai

gi,α(y
α +ρ(yα)) = gi(y) +ρ(gi)

and the initial in(∂ βωi) is also the initial of ∂ β gi (β ∈ Nn). Therefore the initial of the
vector space spanned by ωi(y) = gi(y) +ρ(gi) and all its derivatives coincides with the
vector space spanned by the initial of ωi(y) = gi(y) and all its derivatives. Therefore,
the two vector spaces have the same dimension. This concludes the proof. �

Remark 5.4.2 Instead of a shift by 1 and the generating series of h computed on the unitary
grid Nn, one can consider the shift S j(h) = h

�

x1, . . . , x j−1, x j +
1
Ti

, x j+1, . . . , xn

�

for T j ∈

R+ and the generating series of the sequence
�

h
�

α1
T1

, . . . , αn
Tn

��

α∈Nn
. The previous results

apply directly, replacing the function h by hT : (x1, . . . , xn) 7→ h
�

x1
T1

, . . . , xn
Tn

�

where T =
(T1, . . . , Tn).
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Remark 5.4.3 Using Lemma 2.2.4, we check that the map h ∈ P olE x p 7→ σh ∈ C[[y]]
is injective and the regularity condition is satisfied on P olE x p. Thus, in Theorem 5.4.1 if
h ∈ P olE x p then we must have r(x ) = 0.

Remark 5.4.4 By applying Algorithm 4.6.2 to the sequence of evaluations of a function
h ∈ P olE x p on the (first) points of a regular grid inRn, we obtain a method to decompose
functions in ∈ P olE x p as a sum of products of polynomials by exponentials.

5.5 Sparse interpolation

For β = (β1, . . . ,βn) ∈Nn and x ∈Cn, we denote logβ x =
∏n

i=1(log(x i))βi where log(x)
is the principal value of the complex logarithm C \ {0}. Let

P olL og(x1, . . . , xn) =

(

∑

α,β

pα,β xα logβ(x ), pα,β ∈C

)

be the set of functions, which are the sum of products of polynomials in x and polynomials
in log(x ).

For h =
∑

α,β hα,β xα logβ(x ) ∈ P olL og(x ), we denote by ε(h) the set of exponents
α ∈Nn such that hα,β 6= 0.

The sparse interpolation problem consists in computing the decomposition of a func-
tion p of P olL og(x ) as a sum of terms of the form pα,β xα logβ(x ) from the values of p.
We apply the construction introduced in Section 5.1 with

• F =P olL og(x ),

• S j : h(x1, . . . , xn) 7→ h(x1, . . . , x j−1,λ j x j, x j+1, . . . , xn) the scaling operator of x j by
λ j ∈C,

• ∆ : h(x1, . . . , xn) 7→∆[h] = h(1, . . . , 1) the evaluation at 1= (1, . . . , 1).

We easily check that

• the operators S j are commuting,

• for α = (α1, . . . ,αn) ∈ Nn, the monomial xα is an eigenfunction of S j: S j(xα) =
λ
α j

j xα.

• for α = (α1, . . . ,αn) ∈ Nn, β = (β1, . . . ,βn) ∈ Nn, xα logβ(x ) is a generalized
eigenfunction of S j:

S j(x
α logβ(x )) =

∑

0¶β ′¶β j

λ
α j

j

�

β j

β ′

�

logβ j−β ′ λ j logβ
′
(x j)x

α
∏

k 6= j

logβk(xk).
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More generally, for γ ∈Nn, we have

Sγ(xα logβ(x )) =

�

n
∏

i=1

(λγi
i x i)

αi

��

n
∏

i=1

(γi log(λi) + log(x i))
βi

�

= ξγxα
 

∑

β ′�β

�

β

β ′

�

γβ
′
logβ

′
(λ) logβ−β

′
(x )

!

where ξ= (λα1
1 , . . . ,λαn

n ). We deduce that,

∆[Sγ(xα logβ(x ))] = ξγγβ logβ(λ). (5.7)

Theorem 5.5.1 Let h ∈ P olL og(x ). For λ1, . . . ,λn ∈ C, the generating series σh =
∑

γ∈Nn h(λγ1
1 , . . . ,λγn

n )
yγ

γ! of h is of the form

σh(y) =
r ′
∑

i=1

ωi(y)eξi
(y)

with

• ε(h) = {α1, . . . ,αr ′},

• ξi = (λ
αi,1

1 , . . . ,λ
αi,n
n ) ∈Cn,

• ωi(y) =
∑

β∈Bi
ωi,β yβ ∈C[y].

If moreover λi 6= 1 and the points ξi = (λ
αi,1

1 , . . . ,λ
αi,n
n ), αi ∈ ε(h) are distinct, then h =

∑r ′

i=1

∑

β∈Bi
ωi,β xαi logβ(x ).

Proof. Let α,β ∈Nn. As xα is an eigenfunction of the operators S j, its generating series
associated to xα is eξ(y) where ξ = (λα1

1 , . . . ,λαn
n ). From the relations (5.5) and (5.6),

we deduce that the generating series of xα logβ(x ) is

σxα logβ (x ) = logβ(λ)
∑

γ∈Nn

γβξγ
yγ

γ!
= logβ(λ)ωβ(y)eξ(y)

whereωβ(y) is the polynomial obtained from the expansion of yβ in terms of the Macaulay
binomial polynomials bα(y). As in Section 5.4, this shows that the completeness property
is satisfied.

If h =
∑r ′

i=1

∑

β∈Bi
hi,β xαi logβ(x ), λi 6= 1 and the points ξi = (λ

αi,1

1 , . . . ,λ
αi,n
n ) are

distinct, then

σh =
r ′
∑

i=1

 

∑

β∈Bi

hi,β logβ(λ)ωβ(y)

!

eξi
(y) =

r ′
∑

i=1

ωi(y)eξi
(y)
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with ξi = (λ
αi,1

1 , . . . ,λ
αi,n
n ) and ωi(y) ∈ C[x ]. By Lemma 2.2.4 and the linear indepen-

dency of the polynomialsωβ , we deduce that the coefficients hi,β are uniquely determined
from the coefficients of the decomposition of ωi(y) in terms of the Macaulay binomial
polynomials ωβ , since logβ(λ) 6= 0. �

This result leads to a new method to decompose an element h ∈ P olL og(x ) with
an exponent set ε(h) ⊂ A ⊂ Nn. By choosing λ1, . . . ,λn ∈ C \ {1} such that the points
(λα1 , . . . ,λαn) for α ∈ A are distinct and by computing the decomposition of the gener-

ating series as a polynomial-exponential series
∑r ′

i=1ωi(y)eξi
(y) (Algorithm 4.6.2), we

deduce the exponents αi = (logλ1
(ξi,1), . . . , logλn

(ξi,n)) and the coefficients hi,β in the

decomposition h=
∑r ′

i=1

∑

β∈Bi
hi,β xαi logβ(x ) from the weight polynomials ωi(y).

This method generalizes the sparse interpolation methods of [BOT88], [Zip79], [GLL09],
where a single operator S : h(x1, . . . , xn) 7→ h(λ1 x1, . . . ,λn xn) is used for someλ1, . . . ,λn ∈
C and where only polynomial functions are considered. The monomials xα (α ∈Nn) are
eigenfunctions of S for the eigenvalue λα =

∏n
i=1λ

αi
i . For h =

∑r
i=1ωi x

αi , the cor-
responding univariate generating series σh defines an Hankel operator, which kernel
is generated by the polynomial p(x) =

∏r
i=1(x − λ

αi) when λα1 , . . . ,λαr are distinct.
If λ1, . . . ,λn ∈ C are chosen adequately (for instance distinct prime integers [BOT88],
[Zip79] or roots of unity of different orders [GLL09]), the roots of p yield the exponents
of h ∈C[x ].

The multivariate approach allows to use moments h(λα1
1 , . . . ,λαn

n )withα= (α1, . . . ,αn) ∈
Nn of degree |α|= α1+ · · ·+αn less than the degree 2r−1 needed in the previous sparse
interpolation methods. Sums of products of polynomials and logarithm functions can
also be recovered by this method, the logarithm terms corresponding to multiple roots.
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