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Parametric forms are widely used as representations of curves in geometric
modelling and computer aided design. The procedure of converting a parametric
form into an implicit form, namely implicitization, in the case of plane curves
had been studied extensively by means of resultant matrices such as Sylvester,
denoted by Syl , Bézout or Hybrid Bézout matrices [3, 4], Groebner bases [5, 6]
and syzygy based matrices, denoted by Mrep, [1, 7, 8]. Given a parameterization
of general degree d plane curve C

R → R2 (1)

s 7→
(
f1(s)

f0(s)
,
f2(s)

f0(s)

)
,

the implicit equation of C is an element of the ideal I := (f0T1−f1, f0T2−f2) ∈
R[s, T1, T2]. It is known that the ideal I can be generated by p and q where
p, q ∈ I ⊂ R[s, T1, T2] such that degs(p) = µ1, degs(q) = µ2, degT1,T2

(p) =
degT1,T2

(q) = 1 and µ1 + µ2 = d. We will refer to the ideal generators p and q
as the µ-basis of the ideal I. Without loss of generality, we may assume that
µ2 ≥ µ1. We have the following table where µ2 =

⌈
d
2

⌉
for a general plane curve

of degree d

size of the matrix type of resultant matrix

(2d× 2d) Syl(f0T1 − f1, f0T2 − f2),

(d× d) Syl(p, q),

(µ2 × µ2) Bézout and Hybrid Bézout of p, q.

For a parameterization of a degree d general space curve D in Rn,

R → Rn (2)

s 7→
(
f1(s)

f0(s)
,
f2(s)

f0(s)
, · · · , fn(s)

f0(s)

)
,

where f0, · · · , fn are linearly independent polynomials. Its µ-basis exists and
it consists of n polynomials p1, · · · , pn of degree µ1, · · · , µn respectively with

1



respect to s such that pi = pi,0(s) +
n∑

j=1

pi,j(s)Tj with degs(pi,j(s)) ≤ µi and

there exist at least one k ∈ {0, · · · , n} such that degs(pi,k(s)) = µi. We may
assume that µn ≥ µn−1 ≥ · · · ≥ µ1. It is known that µ1 + · · · + µn = d.
If the µ-bases p1, · · · , pn is known, by computing the resultants of pi, pj with
respect to s, where 1 ≤ i < j ≤ n, we obtain n(n−1)

2 implicit surfaces. The
curve D is contained in the intersection of these implicit surfaces. However, this
intersection may contain extraneous points, i.e. points which are not on the
parametric curve D, [9]. It is also known that the implicit matrix representation
by moving lines Mrep has µn + µn−1 rows, [1].

In this talk, we introduce a new implicit matrix representation, that we
denote by QMrep, of a rational parametric curve D in Rn by means of quadratic
relations. We show that it is possible to obtain an implicit matrix representation
QMrep with quadratic entries having µn rows. We recall that for a degree d
general parametric curve in Rn, µn =

⌈
d
n

⌉
, [9]. Compared to the Mrep of D,

[1], QMrep of D has half number of rows.

Joint work with : Clément Laroche - University of Athens, ATHENA
Research and Innovation Center.
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