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Solving polynomial systems is one of the oldest and most important problems
in computational mathematics and has many applications in several domains of
science and engineering. It is an intrinsically hard problem with complexity at
least single exponential in the number of variables [8]. However, almost always,
the polynomial systems coming from applications have some kind of a structure.
For example, several problems in computer-aided design, robotics, computer
vision, molecular biology and kinematics [4, 5] involve polynomial systems that
are sparse, that is just few monomials have non-zero coefficients. In this talk,
we focus on exploiting the sparsity of the supports of the polynomials to solve
the systems faster than the worst case estimates. In this setting a system is
unmixed if all its polynomials have the same support (Newton polytope), and
mixed otherwise. We will concentrate in sparse Gröbner basis algorithms for
solving mixed systems.

Gröbner bases are particular kind of bases which allow us to compute geo-
metric and algebraic properties of ideals and modules. They are in the heart
of most of the nonlinear algebra algorithms. They are standard tools to solve
0-dimensional systems ; we do so by computing them with respect to a lexico-
graphical monomial order. The efficient computation of Gröbner basis relies on
recursive computations, avoiding reductions to zero [1]. The main criterion to
avoid these reductions is the F5 criterion [6]. The term sparse Gröbner bases,
as defined in [7], refers to the computation of Gröbner basis over a semigroup
algebra. The idea is to embed the polynomials in a semigroup algebra, instead of
the standard polynomial algebra, and so to force the computations to take into
account the sparsity. In [7], the authors consider unmixed systems and introduce
an algorithm to compute such a basis which, under regularity assumptions, per-
forms no reduction to zero. However, the mixed systems does not satisfy such
regularity assumptions and so, for such systems, this algorithm does not avoid
every reduction to zero. To overcome this obstacle, we propose [2] an alternative
definition of sparse Gröbner basis together with an algorithm to compute it. Our
novelty consists in considering sparse orders that are not monomial orders. If
the mixed system satisfies certain regularity assumptions, our algorithm avoids
every reduction to zero. These assumptions are more general than the ones in
[7].

We also consider mixed multihomogeneous systems, which form an impor-
tant subclass of mixed sparse systems. Some of their properties are well unders-
tood, for example, the (multigraded) Castelnuovo-Mumford regularity [10, 3].
In the standard homogeneous setting, this regularity is a measure of the com-
plexity of a module. In [2], we use the definitions and bounds on the multigraded
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Castelnuovo-Mumford regularity from [10, 3] and we extended the F5 criterion
[6] to introduce a dedicated recursive algorithm that computes Gröbner bases
of regular 0-dimensional mixed multihomogeneous systems, avoiding every re-
duction to zero. Moreover, we propose a generalization of the Macaulay bound
which bounds the maximal multidegree appearing in our computations [9] : If we
consider polynomials of multidegrees d1, . . . ,d(n1+···+nr) over the multiprojec-
tive space Pn1×· · ·×Pnr , this maximal degree is

∑
i di−(n1, . . . , nr)+(1, . . . , 1).
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